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Abstract
In magnetoresistance (MR) studies of magnetic multilayers composed of
combinations of ferromagnetic (F) and non-magnetic (N) metals, the magnetic
moment (or related ‘spin’) of each conduction electron plays a crucial role,
supplementary to that of its charge. While initial analyses of MR in such
multilayers assumed that the direction of the spin of each electron stayed fixed
as the electron transited the multilayer, we now know that this is true only in a
certain limit. Generally, the spins ‘flip’ in a distance characteristic of the metal,
its purity, and the temperature. They can also flip at F/N or N1/N2 interfaces.
In this review we describe how to measure the lengths over which electron
moments flip in pure metals and alloys, and the probability of spin-flipping
at metallic interfaces. Spin-flipping within metals is described by a spin-
diffusion length, lM

sf , where the metal M = F or N. Spin-diffusion lengths are
the characteristic lengths in the current-perpendicular-to-plane (CPP) and lateral
non-local (LNL) geometries that we focus upon in this review. In certain simple
cases, l N

sf sets the distance over which the CPP-MR and LNL-MR decrease as
the N-layer thickness (CPP-MR) or N-film length (LNL) increases, and lF

sf does
the same for increase of the CPP-MR with increasing F-layer thickness. Spin-
flipping at M1/M2 interfaces can be described by a parameter, δM1/M2, which
determines the spin-flipping probability, P = 1 − exp(−δ). Increasing δM1/M2

usually decreases the MR. We list measured values of these parameters and
discuss the limitations on their determinations.
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Organization

This review is organized as follows. Section 1 provides a brief history and overview, defines
the lengths of interest, briefly explains the physics underlying the spin-diffusion lengths that
are the focus of the review, and discusses caveats on theoretical analysis and limitations on the
measurements of the parameters of interest: the transport mean free path, λt; the spin-diffusion
length in non-magnetic (N) metals or alloys, lN

sf ; the spin-diffusion length in ferromagnetic
(F) metals or alloys, lF

sf; and the interfacial spin-flip parameter, δ, where the spin-flipping
probability is P = 1 − exp(−δ). Section 2 describes the different ways in which these
parameters have been measured, and gives more specifics of their limitations. Section 3
contains four tables. Table 1 lists values of lN

sf for well-defined Cu- and Ag-based alloys at
4.2 K. lN

sf should be intrinsic to each alloy, and the values are used to test quantitatively both the
Valet–Fert (VF) theory of the CPP-MR and two experimental techniques that use it. Table 2
lists values of lN

sf in nominally pure metals at temperatures T from 4.2 to 293 K. lN
sf should be

unique to each sample at 4.2 K, but should be intrinsic in sufficiently high-purity samples at
293 K. Table 3 lists values of lF

sf in ferromagnetic metals and alloys, mostly at 4.2 K. Table 4
lists values of δN1/N2 for several N1/N2 metal pairs at 4.2 K. Each table is preceded by some
comments about the results. Section 4 contains a brief summary and our conclusions.

1. History, overview, definitions, and caveats and limitations

1.1. History and overview

The discovery in 1988 of giant magnetoresistance (GMR) in ferromagnetic/non-magnetic (F/N)
metallic multilayers [1, 2] stimulated the growth of a new subfield of transport studies in
magnetic materials, now often called spintronics. In spintronics, the electron’s magnetic
moment (or spin, which points opposite to the moment) plays a fundamental role supplementary
to that of the electron’s charge. Preceding the discovery of GMR, pioneering lateral non-
local (LNL) studies measured [3] the distance over which electron moments (spins) flipped
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(spin-diffusion length lsf) as current passed along a very high-purity, annealed Al foil across
which two separated F-strips were deposited (see figure 12(a)#2). The resulting long spin-
diffusion length (lAl

sf ∼ 450 μm at 4 K) led to the expectation that such spin-flipping was
negligible in GMR multilayers, even though they are much less pure. Thus early analyses
of both current-in-plane (CIP)- [1] [4] and current-perpendicular-to-plane (CPP)-MRs [5–8]
neglected spin-flipping, assuming that the direction of an electron’s moment stays fixed as
the electron propagates through the multilayer. Even with this assumption, theories of the
CIP-MR are relatively complex, in part because the mean free paths, λ, for total scattering of
electrons (both without and with spin-flipping), are fundamental lengths in the problem [4].
Since usually λ � lsf, variations of the CIP-MR with layer thickness are determined mainly
by λ. For the CPP-MR [9–11], in contrast, the assumption of no spin-flipping led initially to a
simple two-current series resistor (2CSR) model, in which currents of electrons with moments
up or down relative to a fixed direction propagate independently. In the magnetic state where
the moments of adjacent F-layers are oriented anti-parallel (AP) to each other, this model gives
a total specific resistance (sample area A times resistance R) that is just the sum of effective
resistivities (ρ∗) times layer thicknesses (t) within the F- and N-layers, plus effective interface
specific resistances (AR∗) [6–8]. We will define ρ∗ and AR∗, and present the 2CSR model in
more detail in section 2.2. For the moment, we emphasize that the only lengths in this model
for the CPP-MR are the thicknesses tF and tN of the F- and N-layers; unlike the CIP-MR, λ is
generally not a characteristic length in the CPP-MR (but see appendix C). In 1993, the Valet–
Fert (VF) theory [8] of the CPP-MR included effects of finite spin-diffusion lengths in both
N- and F-metals (lN

sf and lF
sf) in a convenient way that stimulated experimental studies to look

for them. CPP-MR studies, first in dilute N-metal alloys [12] and then in the F-alloy Permalloy
(Py = Ni1−x Fex with x ∼ 0.2) [13], found that values of lN

sf or lF
sf were sometimes small

enough to be comparable to experimentally interesting layer thicknesses, tN or tF. Inserting a
finite lN

sf or lF
sf affects the magnitude of the CPP-MR, usually reducing it from what it would

have been with infinite lN
sf or lF

sf, but occasionally enhancing it (see [14, 15] and figures 5
and 6). While spin-flipping within N- and F-metals is now regularly taken into account, most
studies still assume that electrons do not flip their spins when they cross interfaces. We will
argue that this assumption can be wrong, even for simple N1/N2 interfaces. Spin-flipping
at interfaces is especially interesting at F/S (S = superconductor) and F/N interfaces, where,
unfortunately, little reliable information is yet available. For F/N interfaces, we will discuss
in section 2.2.2.(b2(b)) what little is known. Interestingly, inclusion of modest spin-flipping
at F/N interfaces does not greatly affect the CPP-MR of simple [F/N]N multilayers [16],
where N is a significant number of bilayers. But it does affect the CPP-MR of symmetric
exchange-biased spin-valves (EBSVs) [16], made up of only two equal-thickness F-layers, the
magnetization of one pinned in a fixed direction by an adjacent antiferromagnet (AF), and the
magnetization of the other free to reverse from parallel (P) to antiparallel (AP) to that of the
first [17]. In proximity-effect F/S systems, effects of spin-flipping in the bulk F-metal have
been seen in damped oscillatory behaviour of the superconducting correlations, in agreement
with predictions [18–20]. Expected longer-range penetration into the F-metal of triplet-state
superconducting correlations is also predicted to be attenuated by spin flipping in the bulk of
F [19, 21], and the triplet correlations themselves may be affected by spin flipping in the bulk
of the S-metal and at the F/S interfaces. But these other predictions have yet to be confirmed.

In this review, we examine, from an experimentalist’s perspective, what we believe has
been learned about lN

sf , lF
sf, and δN1/N2, and also some less clear-cut studies of δF/N. We have

organized the review for readers with different levels of interest. Those interested only in
the results can read just section 1, which briefly outlines the lengths and physics involved,
and describes the caveats and limitations of the various types of measurements, and section 3,
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which contains tables of the published values of lN
sf , lF

sf, and δN1/N2, along with our comments.
Values of lN

sf are obtained from CPP-MR, lateral non-local (LNL), and some weak localization
(WL) measurements. Values of lF

sf are obtained mostly from CPP-MR, with a few values from
LNL measurements. Values of δN1/N2 have so far been obtained only by CPP-MR. For those
interested in details, section 2 describes the ways used to derive lN

sf , lF
sf and δN1/N2, and gives

more specifics of limitations, and appendices A–C discuss in more detail important parameters
and issues, and respond to a critique of the fundamental assumptions underlying this review.

WL, conduction electron spin-resonance (CESR), and superconducting tunnelling
measurements have all been used to derive spin-relaxation times, τsf, in metals and alloys. We
include only studies of τsf where the authors explicitly calculated lsf, referring readers interested
in τsf to sources such as [22–24].

Because of both experimental and theoretical uncertainties, it is important to compare
values for nominally identical parameters determined in different ways. Making such
comparisons possible is one of the tasks of this review. We sometimes have clear views as
to which of the conflicting analyses and derived values are most reliable. We explain our
reasoning, but warn that others will not necessarily agree with us.

1.2. Lengths and ‘physics’

To analyse F/N multilayer structures, we must distinguish several different lengths.
In an isolated N-metal, there are three: the transport (momentum exchange) mean free

path, λt; the spin-flip length, λsf; and the spin-diffusion length, lsf. Qualitatively, electrons
are pictured as moving ballistically between collisions, but making many collisions as they
traverse a sample (diffusive transport). λt is the mean distance between collisions of all kinds
(both spin-direction conserving and spin-flipping). Defining a mean time τ between collisions
gives λt = vFτ , where vF is the Fermi velocity. Similarly, λsf is the mean distance between
spin-flipping collisions. Defining τsf as the mean time between spin-flipping events gives
λsf = vFτsf. lsf, in contrast, is the mean distance that electrons diffuse between spin-flipping
collisions (appendix A shows that lsf obeys a diffusion equation). Except for a numerical factor,
it is the geometric mean of λt and λsf. In a single N-metal, the standard form is [8]

lsf = √
Dτsf = √

(1/3)λtvFτsf = √
(1/3)λtλsf, (1)

where D is the ‘diffusion constant’, and the usual ordering of lengths is λt < lsf < λsf.
In an isolated F-metal, one must consider separate propagation of electrons with moments

up or down. Asymmetric scattering of majority (electron magnetic moment along (↑) the
local F-layer moment) and minority (electron moment opposite to (↓) that of the local F-layer)
electrons leads to separate mean free paths, λF

↑ and λF
↓, with scattering of (↓) electrons usually

stronger. This asymmetric scattering also leads to separate spin-diffusion lengths, lF
↑ and lF

↓,
but in the equations of primary interest, these combine into a single ‘spin-diffusion’ length, lF

sf,
according to appendix A: [1/ lF

sf]2 = [1/ lF
↑]2 + [1/ lF

↓]2 [8, 25]. We show in appendix A that
applying equation (1) to each spin channel within VF theory, and using the relation for lF

sf just
given, produces an equation for lF

sf in which the λ in equation (1) is not λt, but a new quantity,
λF∗ = λt(1 − β2

F) (where βF is defined in appendix A and section 2.2.1) and the fraction under
the square root for both lN

sf and lF
sf is not (1/3), but (1/6). Thus we obtain

F-metal lF
sf =

√
[λF∗λF

sf/6] =
√

[(1 − β2
F)λF

t λ
F
sf/6)]. (2)

For an N-metal, βF = 0, and equation (2) reduces to just

N-metal lN
sf =

√
(λN

t λN
sf)/6. (3)
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We assume from here on that equations (2) and (3) apply to the F and N components of general
F/N multilayers.

In most samples of nominally ‘pure’ metals, electrons are scattered at cryogenic
temperatures mostly by an unknown combination of (generally) unknown impurities, and
at room temperature by a combination of these impurities and phonons. In sputtered or
evaporated samples, the scattering from these impurities usually remains important to above
room temperature. In such a case, any experimentally derived value of lN

sf strictly represents
only a property of the given sample being measured. To obtain an intrinsic value of lN

sf , one
must have either a sample of high enough purity that phonon scattering is dominant at the
measuring temperature, or an alloy in which a known concentration c of a known impurity is
dominant.

If a dominant impurity in a host has no local magnetic moment, it flips electron spins by
spin–orbit scattering. If the spin–orbit cross-section, σso, for this impurity in this host is known
from CESR (see, e.g., [26]), then λN

sf is given by

λN
sf = λN

so = [1/(ncσso)], (4)

where n is the number of host atoms per unit volume. CESR values of σso are given for a
number of Cu-based alloys (and some Ag-, and Al-based ones) in [26]. For such a dilute,
known, impurity concentration, both λN

t and λN
sf are proportional to (1/c), giving lN

sf ∝ λN
t .

If λN
t can be determined (see appendix B), then lN

sf can be calculated from equation (3) and
compared with experiment. In table 1 we compare experimental and calculated values of lN

sf at
4.2 K for several dilute alloys in which spin–orbit scattering is dominant. We take the observed
agreement between these values as evidence that both the VF theory and the experimental
techniques used are valid, and, thus, that few if any ‘mean free path’ effects (see appendix C)
are needed. Some of the impurities included in table 1 have a local moment, in which case
spin-flipping is produced by spin–spin scattering. Estimating λN

sf is then more complicated, and
we refer the interested reader to [27].

Any additional source of scattering that increases the resistivity ρ will decrease lsf at least
as the square root of the inverse of ρ, because the mean free path λt appears under the square
root for lsf in both equations (2) and (3), and because equation (5) below and appendix B
show that λt is inversely proportional to ρ. If the source also flips spins, it may decrease
lsf inversely with ρ. We will discuss this topic further in section 1.3, and test for an inverse
relationship between lsf and ρ, in tables 2 and 3 by including a column of the product ρlsf, and
in figures 14–16 by plotting lsf versus 1/ρ.

To clarify how finite lN
sf and lF

sf affect the CPP-MR of a simple N1/F1/N2/F2 multilayer,
we discuss two different ways of looking at this MR, each starting from a simple N1/F1/N2
trilayer, and adding an F2 layer to the right of N2 as a ‘detector’.

The first way is to say that asymmetric scattering within F1 causes emerging electrons to
be ‘spin-polarized’ (more precisely, magnetized—i.e. usually more moment ↑ than moment
↓), and that spin-polarization can be detected, as with polarized light, by putting a ‘detector’
at the ‘end’ of N2. If the detector is another fully magnetized F-metal, F2, then there should
be a change in the voltage, �V , or the related resistance (�R = �V/I ), across the sample
when the moment of F2 is reversed from parallel (P) to anti-parallel (AP) to that of F1. The
limit where the current arriving at F2 is ‘unpolarized’ should give �R = 0. When �R �= 0, it
should decay exponentially with the separation L(=�z) between F1 and F2 (see appendix A
and the following).

The second way is to say that, as more ↑ electrons than ↓ ones pass through F1, a pileup
of excess ↓ electrons must occur on the N1 side of the N1/F1 interface. The system must
adjust itself so that, at steady state, the excess ↓ electrons that arrive at the interface ‘diffuse
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away’ as fast as they arrive. At the interface, there will be a non-zero difference in chemical
potential �μ = μ↑ − μ↓—i.e., the number of electrons at the Fermi surface will be larger
for whichever of μ↑ or μ↓ is larger. In a free-electron model, |�μ| = 2μ0|�M|/(3nμB) is
related to an out of equilibrium magnetization, �M , where n is the electron density, μB is
the Bohr magneton, and μ0 is the magnetic permeability of empty space. This excess local
magnetization (or ‘spin’) is called a ‘spin-accumulation’ [8]. As shown in appendix A, �μ

is governed by a diffusion equation with length scale lN
sf or lF

sf. In one dimension, the solution
to this equation has the form �μ = A exp(z/ lsf) + B exp(−z/ lsf), where the coefficients A
and B are determined by boundary conditions. In a simple N/F1(t)/N trilayer, where t is
the F1 layer thickness, |�μ| grows exponentially in N as F1 is approached from the left, may
vary or not within F1 depending upon the ratio t/ l F1

sf , and then decays exponentially in N2
with increasing z. The experimental procedures used to determine lN

sf are normally arranged
so that the spin-accumulation decays exponentially in N2 away from the F1/N2 interface.
More precisely, the contribution of spin-accumulation to the voltage (resistance) across the
sample changes as the moment of F2 is reversed, and it is usually the exponential decay of
this change with separation (L = �z) between F1 and F2 that is used to determine lN

sf . The
procedures used to determine lF

sf are somewhat more complex, generally requiring a solution
of the VF equations with appropriate boundary conditions, including possible changes in μ at
the interfaces (neglected for simplicity in this simple discussion). In LNL measurements, the
net flow of applied current, and the decay of spin-accumulation, occur in different parts of the
sample (hence the appellation ‘non-local’).

With �μ = μ↑−μ↓ defined, we can specify more precisely the effect of finite lsf. As noted
above, and shown in appendix A, lN

sf is the characteristic length over which �μ varies within an
N-metal, and lF

sf is the length over which it varies within an F-metal [8]. In carefully chosen geo-
metries, the CPP-MR (see, e.g., figure 9 below) and LNL-MR (figure 13 below) can decrease
exponentially with increasing N-layer thickness, tN, on a scale set by lN

sf , and the CPP-MR can
increase with increasing F-layer thickness, tF, on a scale set by lF

sf (see, e.g., figures 5 and 6).

1.3. Caveats and limitations on measurements

Most published measurements of lN
sf , lF

sf are at 4.2 K or near room temperature (RT ≈ 293 K).
At 4.2 K, scattering by magnons or phonons is negligible, and lN

sf and lF
sf are determined

by spin–orbit or spin–spin scattering from defects or impurities [27]. As noted above, values
of lN

sf or lF
sf at 4.2 K are, thus, intrinsic only for binary alloys where scattering from a known

concentration of a known impurity dominates. At 293 K, in contrast, scattering by phonons can
dominate the resistivity of pure enough metals, in which case lN

sf or lF
sf should be intrinsic. As

also noted above, in sputtered or evaporated N- or F-metals, scattering from residual defects
and impurities can be comparable to that from phonons at 293 K, in which case lN

sf or lF
sf would

not be intrinsic to the host metal. Moreover, in F-metals scattering by magnons increases
with increasing temperature [27], as does the generalization of spin–orbit scattering in all
metals [28]. Along with phonon scattering, these reduce lsf as the temperature T increases,
and different combinations could affect correlations of lN

sf or lF
sf with 1/ρ.

For N1/N2 interfaces, one can be sure that δN1/N2 is fundamental only for a given interfacial
structure. It is not known how sensitive δ might be to interface intermixing. Perhaps it is
not, since calculated interface specific resistances, 2AR, are often not sensitive to details of
interfacial intermixing [29–31]. So far, only one technique has been used to measure δN1/N2,
and no calculations of δN1/N2 have been made; thus how intrinsic the results are is not clear.

Most models used to analyse experimental data assume identical free-electron Fermi
surfaces in both the N- and F-metals. In this case, the mean free paths, λ, in both the N- and
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F-metals are not characteristic lengths in the CPP-MR, and play no direct role [6, 8]. If there is
also no spin-flipping, one obtains the 2CSR model. In the past few years, several theorists have
shown [32–36] that taking account of real Fermi surfaces might cause the interface specific
resistances to change as the layer thicknesses vary from much larger to much smaller than the
mean free paths in the layers. Such changes in interface specific resistance with layer thickness
are called ‘mean free path’ (mfp) effects. For thick enough layers, these models provide a more
rigorous justification for use of the 2CSR model when spin-flipping is absent. Said another way,
in this limit the 2CSR model provides a convenient way to parameterize the experimental data in
terms of layer resistivities and interface specific resistances, leaving the detailed understanding
of these parameters to be handled separately. For thinner layers, these calculations mean that
the situation is less clear, and experiments must be examined carefully. At one extreme, it is
argued [32] that mfp effects might be the source of the phenomena that we attribute to finite
spin-diffusion lengths. Since this argument calls into question the basis of the present review,
we must address it in detail. To avoid a major diversion in the body of the review, we do so in
appendix C. Our conclusion is closer to the other extreme, that, so far, any mfp effects appear
to be modest (�10%), almost always falling within experimental uncertainties, We argue in
appendix C that, with one possible exception, there is no compelling evidence that mfp effects
cause significant deviations from the free-electron VF equations, and substantial experimental
evidence to the contrary.

The Valet–Fert (VF) equations used to derive lN
sf , lF

sf, and δN1/N2 from CPP-MR data are
strictly only the lowest-order expansion in the ratio(s) λ/ lsf, and in some alloys this ratio is not
�1. Penn and Stiles [37] recently showed numerically that they remain good approximations
even when this ratio is close to one.

Most models used to analyse both CPP-MR and LNL data are one-dimensional (1D)—
i.e. they assume that a constant current density flows uniformly through the sample. We will
see that some samples and geometries satisfy the conditions needed for this to be true, but that
others do not. Parameters determined by those that do not are at least somewhat suspect.

To obtain the most reliable values of lN
sf with lateral non-local (LNL) measurements and

low resistance, metallic F/N contacts, the sample width, W , should be much less than the
sample length, L (i.e., W � L). LNL measurements with tunnelling contacts do not suffer this
limitation. We will also argue that, for low-resistance, metallic F/N contacts, different equations
must be used to analyse data when the F/N interface resistance is less than, in between, or larger
than the effective resistances of the thin F and N films (see equations (16a)–(16c) below).
If so, some investigators have used inappropriate equations to analyse their data. For LNL
measurements with tunnelling contacts, equation (16c) should always be valid.

2. Determining λt, lN
sf, lF

sf, and δN1/N2

In section 2.1 we explain how to determine the transport mean free path, λt. Section 2.2
contains background information on the CPP-MR and then details of how it is used to determine
lN
sf , lF

sf, and δN1/N2. In section 2.2.2(b2(b)), we also examine some inferences about δF/N.
Section 2.3 describes how lateral non-local (LNL) measurements are used to determine lN

sf and
lF
sf. Section 2.4 briefly outlines the weak-localization (WL) technique used to determine the

spin-diffusion length limited by spin–orbit scattering, lN
so.

Finding lN
sf , lF

sf, or δN1/N2 from the CPP-MR or LNL measurements involves measuring
the change in specific resistance, A�R (for CPP-MR), or just the change in resistance,
�R = R(AP) − R(P) (for LNL), when the magnetizations of two F-layers are switched by
an external magnetic field H from anti-parallel (AP) to parallel (P) to each other. Determining
AR(AP), A�R, and �R thus requires the ability to achieve both P and AP states. The P state
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can be obtained simply by applying a field H large enough to align all F-layers along the
field. The AP state is harder to produce, but has been achieved in several ways. Firstly, some
simple [F/N]N multilayers (N = number of repeats) adopt an AP ordering of the F-layer
magnetizations, either in their as-prepared state [38] (figure 1(a)), or because the magnetic
exchange coupling between adjacent F-layers is antiferromagnetic (AF) [1, 2]. Secondly,
in a multilayer of the form [F1/N/F2/N]N , the two F-layers can have different switching
fields if they are different metals or alloys, or if they have different layer thicknesses and/or
widths (this last is used especially in LNL studies). Figure 1(b) illustrates the resulting total
specific resistance ART (H ). Thirdly, the magnetization direction of one of the F-layers can
be ‘exchange-bias pinned’ [17] to an adjacent AF-layer, and the other ‘free’ F-layer placed so
far away that exchange coupling is negligible. The free layer in such an exchange-biased spin-
valve (EBSV) then switches back and forth at much lower values of H than needed to ‘unpin’
the pinned layer. Figure 1(c) shows the ‘minor loop’ for an EBSV, where the pinned layer stays
pinned.

2.1. Finding λt

Appendix B explains how one defines λt for a given metal. Since the mean free paths of
electrons may vary over the Fermi surface, λt must be an average over this surface. Traditionally
λt is estimated from the relation ([39] and appendix B)

λt = ρblb/ρt, (5)

where the product ρblb ∼ 1 f	 m2 is assumed to be a temperature-independent constant for
given host-metal and ρt is the sample resistivity at temperature T . The constant ρblb can be
calculated (assuming free electrons [39] or real Fermi surfaces [40]), or measured from size-
effect or anomalous skin-effect studies [40]. We argue in appendix B that the uncertainty for
the most widely studied metals, Cu and Ag, probably does not exceed 50%.

Determining λt generally starts with a four-probe, CIP measurement of the electrical
resistivity, ρ(T ), of a thin film, often using the van der Pauw technique [41]. For LNL or
WL studies, this may be the thin sample film itself, in which case the resistivity can include
a component due to surface scattering. For samples in the CPP geometry, it is usually a CIP
measurement of a separate film prepared in the same way as the CPP sample film, and made
several times thicker than the expected mean free path, to minimize any surface contribution.

2.2. CPP-MR

2.2.1. Background. As noted in section 1, if spin-flipping is negligible, the CPP-MR
can often be well described by a simple 2CSR model. In this model, currents for up and
down electrons propagate independently and in parallel, and AR for each current is just
the sum of appropriate resistivities (ρ↑

F or ρ
↓
F ) times F-layer thickness tF in the F-layers,

2ρNtN (because only one spin direction is involved) in the N-metal, and AR↑
F/N or AR↓

F/N
at each F/N interface. As in section 1.2, ↑ and ↓ mean that the electron moment is oriented
along or opposite to the moment of the F-metal through which it is passing. A set of four
alternative parameters more convenient for analysing the CPP-MR is: ρ∗

F = (ρ
↓
F + ρ

↑
F )/4;

βF = (ρ
↓
F − ρ

↑
F )/(ρ

↓
F + ρ

↑
F ) for bulk F (see appendix A); and AR∗

F/N = (AR↓
F/N + AR↑

F/N)/4;

and γF/N = (AR↓
F/N − AR↑

F/N )/(AR↓
F/N + AR↑

F/N) for F/N interfaces. By measuring the F-
metal resistivity, ρF = ρ∗

F(1 − β2
F) ([8] and appendix A), and the additional N-metal resistivity,

ρN, on separately prepared thin films, the number of unknown parameters can be reduced from
five to three. Three is few enough that one can test the applicability of the 2CSR model [7, 42]
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Figure 1. CPP ART (H ) versus H at 4.2 K for: (a) a simple [Co(6)/Ag(6)]6 multilayer with all
Co-layers having equal thickness; (b) a [Co(8)/Cu(10)/Co(1)/Cu(10)]4 multilayer with F-layers
of alternating thicknesses, and (c) an EBSV of the form [FeMn(8)/Py(24)/Cu(10)/Py(24)]. Cases (b)
and (c) give stable values of AR (AP) that reproduce during multiple field sweeps when the sample
is taken to high-field saturation. In case (a), in contrast, the maximum AR obtained after saturation
is AR (peak), but the best estimate of AR (AP) is AR (0), an initial state that does not reproduce
under field sweeps. Demagnetization of a simple multilayer usually gives values of AR(H ) between
AR (0) and AR (peak) [38].

when spin-flipping is weak, and look for effects of finite lN
sf , lF

sf, or δN1/N2, when spin-flipping is
stronger.

9
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Figure 2. CPP-MR geometries. (a) Superconducting cross-strips with a short, wide sample
(L � W ); (b) nanowire (L 
 W ); (c) nanopillar, L ∼ W .

Valet and Fert (VF) [8] showed how to extend the 2CSR model to include the two new
parameters, lN

sf and lF
sf. Because their general equations are complex, we write them down only

in certain limiting cases, more generally merely noting that they are usually fitted to a given set
of data numerically, treating lN

sf or lF
sf as the only one, or one of only a few, unknown(s). The VF

equations are derived assuming that both F- and N-metals have free-electron Fermi surfaces,
with the only difference being the scattering within them. As noted above, including real Fermi
surfaces might lead to deviations from the VF equations, or might just modify the values of the
parameters, leaving the VF equations essentially intact. To not break the flow of the review,
this issue is addressed in appendix C.

2.2.2. Finding l N
s f , l F

s f , and δN1/N2 from CPP-MR. In addition to the different ways of
controlling the magnetization orientations of the F-layers described above, different geometries
have been used to isolate spin-flipping parameters. To avoid having to continually respecify
details of sample geometry and control of magnetic order, we define here acronyms for the
CPP-MR, based upon the geometries of figure 2. Figure 2(a) is a short, wide (L � W )

sample using superconducting (S) cross-strips (CPP-S). This geometry is used with either
simple [F/N]N multilayers (CPP-S/ML) or AF/F/N/F spin-valves (CPP-S/SV). It is limited
to low temperatures (so far, only to 4.2 K), and has been used only for spin-diffusion lengths
shorter than about 100 nm. Figure 2(b) is a long, thin (W � L) CPP-nanowire multilayer
(CPP-NW/ML), which can be electrodeposited into a cylindrical hole in a polycarbon or Al2O3

substrate. Figure 2(c) is a CPP-nanopillar (CPP-NP) with W ∼ L. These are mostly produced
by electron-beam lithography and subtractive ion etching. The last two techniques can be used
at room temperature and for longer spin-diffusion lengths.

Since the VF equations are 1D, we must ask whether the CPP current flows uniformly
through samples having the three geometries just described. It does for short (L � 1 μm),
wide (W ∼ 1.2 mm) CPP samples with superconducting (S) cross-strip leads, CPP-S [42]
(figure 2(a)), and for long (L ∼ μm), narrow (W ∼ 50 nm) CPP-nanowires (CPP-NW) [43]
(figure 2(b)), the former because the crossed-S strips are equipotentials and the latter because
L 
 W . It does not strictly do so for typical nanopillars (CPP-NP) where L ∼ W
(figure 2(c)), but becomes better the smaller the sheet resistance, ρ/t , of the extended-width
N-leads compared to the resistance R of the nanopillar.

10
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2.2.2(a). CPP-S/ML used to determine l N
s f for alloys at 4.2 K. The first CPP-MR

determinations of lN
sf involved N = Cu- or Ag-based alloys and application of the 2CSR model

to [F/N]N CPP-S/ML samples with fixed tF [12]. Including a specific resistance ARS/F for
each S/F interface at the ends of the sample [7, 42], and neglecting the difference between N
and N + 1, the 2CSR model gives

ART (AP) = 2ARS/F + N [ρNtN + ρ∗
F tF + 2AR∗

F/N] (6)

and

A�R = N 2[βFρ
∗
F tF + 2γF/N AR∗

F/N]2/ART (AP). (7a)

For use below, we rewrite equation (7a) in the form
√

A�R(ART (AP)) = N [βFρ
∗
F tF + 2γF/N AR∗

F/N]. (7b)

For a set of multilayers with fixed tF, the bracketed quantity on the right-hand side (RHS)
of equation (7b) is constant, independent of both ρN and tN. Equation (7b) then says that a plot
of experimental data for the square-root on its left-hand side (LHS) versus N should yield a
straight line passing through the origin, and the slope of this line should be independent of ρN.
If we replace a relatively pure N-metal, having a low value of ρN, by an alloy N′ having a large
ρN′ , the data for N′ should fall on the same line as that for N.

Underlying equations (6) and (7) are requirements that lF
sf 
 tF and lN

sf 
 tN. In the
experiments we describe, the F-metal was Co, and tCo = 6 nm was fixed at a value well
below the lCo

sf listed in table 3. So finite lF
sf is presumably not a problem. In addition, the total

thickness, tT = N(tN +6) was held fixed at either 360 or 720 nm. Decreasing N , thus, requires
an increase in tN, and finite lN

sf can become important. For nominally pure Cu or Ag at 4.2 K,
table 2 shows that lN

sf � 200 nm, long enough that equation (7b) should apply. If, however,
alloying reduces lN

sf , then deviations from the straight line predicted in equation (7b) should be
expected, with the fractional deviations increasing with decreasing N . lN

sf is found by analysing
these deviations with the VF equations.

Figure 1(a) illustrates the problem of determining ART (AP) and A�R with simple
[F/N]N multilayers. ART (P) can be determined simply by increasing the applied magnetic
field H until ART saturates at its minimum value at high H . However, the data of figure 1(a)
provide two potential possibilities for ART (AP), the as-prepared value of ART , ART (0),
before any field was applied, or the largest value, ART (peak), after saturation was achieved.
Since ART (AP) should be the maximum value of ART , the values of lN

sf given in table 1
were determined assuming ART (AP) = ART (0). Subsequent studies [38] showed that the
as-prepared state of [Co/Cu]N and [Co/Ag]N multilayers with fixed tCo ∼ 6 nm often closely
approximates the AP state. In addition, systematic use of ART (peak) for both pure and alloyed
samples gave closely the same values of lN

sf [44]. These values, thus, appear to be reliable to
∼20%.

Figure 3 [12] shows
√

A�R(ART (0)) versus N for pure Ag, AgSn, AgPt, and AgMn
alloys, and figure 4 [12, 45] shows similar data for Cu and Cu-based alloys. The residual
resistivities, ρ0, for the alloys are given in table 1. Note especially that the ρ0 values for AgSn
and CuGe are larger than those for AgPt or CuPt. We use this fact in appendix C as an argument
against the importance of ‘mean free path’ effects on these data.

Because Sn is close to Ag in atomic number, and Ge is close to Cu, we expect the spin–
orbit cross-sections in both to be small, and indeed the data for AgSn in figure 3 and for CuGe
in figure 4 fall closely along the straight lines through the origin set by the data for nominally
pure Ag and Cu. In contrast, the heavy metal Pt has a large spin–orbit cross-section in both Ag
and Cu [26]. The data for AgPt and CuPt fall well below that for Ag and Cu and, as shown in
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Figure 3.
√

A�R(AR(AP)) versus N for Ag and Ag-based alloys. The numbers to the right of
the curves indicate lN

sf = 11 nm for Ag(6% Mn), 10 nm for Ag(6% Pt), and 7 nm for Ag(9% Mn).
From [12].

Figure 4.
√

A�R(AR(AP)) versus N for Cu and Cu-based alloys. The numbers to the right of the
curves indicate lN

sf = 8 nm for Cu(6% Pt) and 2.8 nm for Cu(7% Mn). After [12] and [45].

table 1, VF fits to the data for lsf in each case agree with values calculated from the spin–orbit
cross-sections. Table 1 shows that similar agreement is found for Cu(Ni) alloys. Because Mn
in Ag or Co has a local moment, scattering from it is dominated by spin–spin interactions.
The values of lN

sf for Mn found from VF theory are compared in table 1 with calculations for
spin–spin flipping [27]. Experiments and calculations again agree.

Finally, as noted in section 2 above, the AP state can be achieved more certainly using
EBSVs. Table 1 contains two examples, Ag(6% Pt) and Cu(22.7%Ni), of values of lN

sf obtained
using EBSVs as described in section 2.2.2(b2). The good agreement of these values with those
for multilayers supports the validity of both techniques.
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Figure 5. A�R versus tPy for Py-based EBSVs. The solid curve is a fit to VF theory with

lPy
sf = 5.5 nm. The dashed curve represents the expected variation for lPy

sf = ∞. Note that, for
small tPy, the solid curve lies above the dashed one, primarily because of the differences in the
denominators of equations (8) and (10). From [13].

Figure 6. A�R versus tF for F = Co- and Co(9%Fe)-based EBSVs. The solid curve is a fit to VF
theory with lCoFe

sf = 12 nm. The dashed line represents the expected variation for lCoFe
sf = ∞. Note

that, for small tCoFe, the solid curve lies above the dashed one, primarily because of the differences
in the denominators of equations (8) and (10). From [46].

2.2.2(b) CPP-S/SV used to determine l F
s f , l N

s f , and δN1/N2 at 4.2 K. To reliably produce
ART (AP), subsequent studies of lN

sf , δN1/N2, and lF
sf at 4.2 K shifted to EBSVs. Most EBSV-

based determinations of lN
sf and δN1/N2 used F = Py (Py = Permalloy = Ni1−xFex with

x ∼ 0.2), because the free Py layer flips in fields small enough (∼20 Oe) that the pinned
layer stays well pinned. For measuring lN

sf and δN1/N2, both Py layers were also taken to be
much thicker (typically 24 nm) than lPy

sf ∼ 5.5 nm, so as to make the free Py-layer flip at a low
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field and to minimize variations in A�R due to fluctuations in tPy and in resistances outside
the Py-layers (see equation (10) below). We discuss first the geometry and analysis used for lF

sf,
and then the common geometry and analysis used for lN

sf and δN1/N2.

2.2.2.(b1). Determining l F
s f with CPP-SVs. The basic geometry used to determine lF

sf is
a symmetric CPP-SV of the form AF/F/N/F, using FeMn as the AF pinning layer, and
maintaining equal thicknesses tF of the two F-layers. Since tF must be varied over a large
range, and pinning effectiveness decreases with increasing tF, care must be taken that AP states
are still achieved for the thickest layers. If all spin-diffusion lengths in the sample are long,
lN
sf 
 tN and lF

sf 
 tF, the 2CSR model now gives

A�R = 4[βFρ
∗
F tF + γF/N AR∗

F/N]2/ART (AP), (8)

where

ART (AP) = ARS/F + ARS/AF + ρAFtAF + ARAF/F + 2ρ∗
F tF + 2AR∗

F/N + ρNtN. (9)

Note the different treatments of the S/F boundaries next to F and to AF. Since tF is squared
in the numerator, but only linear in the denominator, for large tF, A�R increases approximately
linearly with tF, as shown by the dashed curves in figures 5 [13] and 6 [46], where we plot
A�R versus tF for Py, CoFe, and Co.

If, instead, lN
sf is still long, but tF 
 lF

sf, we must use the more general VF model, and the
tF in the numerator of equation (8) is replaced by lF

sf and the denominator reduces to the total
AR for just the central ‘active’ region of the EBSV, lying within lF

sf of each of the two F/N
interfaces [11, 13]:

A�R = 4[βFρ
∗
FlF

sf + γF/N AR∗
F/N]2/(2ρ∗

FlF
sf + 2AR∗

F/N + ρNtN). (10)

In this case, A�R is constant, independent of tF—i.e., A�R saturates for large tF.
The signature of a finite lF

sf is, thus, an initial approximately linear growth in A�R,
followed by eventual saturation to a constant value. At tF between the linear and saturation
regimes, A�R is given by a complex VF expression that must be solved numerically and fitted
to the data with lF

sf as a fitting parameter. Such fits are shown as solid curves for Py in figure 5
and Co(9%Fe) in figure 6, with the resulting values of lF

sf listed in table 3. Note that the values of
lF
sf are much smaller than the tF at which A�R saturates. Rather, they lie close to where A�R

deviates from the 2CSR model dashed lines. A simplified VF picture of why this happens is as
follows. The numerator of equation (8) reaches its maximum value when tF ∼ lF

sf, after which
the tF of equation (8) is replaced by the lF

sf of equation (10). The denominator, in contrast,
starts to decrease even before tF = lF

sf, as the contributions to it from the layers and interfaces
outside of the ‘active’ region begin to disappear. This decrease continues until tF 
 lF

sf, when
the denominator becomes constant, as in equation (10), and A�R reaches its maximum value.
Because the data for Co in figure 6 continued to rise with increasing tCo to the largest value
of tCo used, they were taken as setting only a lower bound ∼40 nm on lCo

sf [47]. We note for
later use that we find this lCo

sf to be less certain than lCoFe
sf or lPy

sf . The slower growth of the Co
data in figure 6 with increasing tCo makes it harder to be sure just where saturation occurs. For
example, if data taking had stopped at tCo = 30 nm, the data could have been interpreted as
saturating after tCo = 20 nm. In addition, for the thickest tCo, the pinning field becomes close
to the reversing field for the free Co layer with the same tCo, so achieving a true AP state is less
sure than for thinner tCo.

2.2.2.(b2). Determining l N
s f and δN1/N2. The basic sample geometry used to determine lN

sf

and δN1/N2 with EBSVs is the same as that used to determine lF
sf, except that the common
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Figure 7. (a) Schematic of an EBSV with a single X = N-layer insert. (b) Calculation of log(A�R)

versus tX for such an EBSV. The dashed line is equation (11) with a constant denominator.
From [48].

ferromagnetic layer thickness tF is now held fixed, and a new entity, X, is inserted into the
middle of the central Cu layer. To determine lN

sf , X is a single N-metal layer, X = N, as shown in
figure 7(a) [48]. In figure 7(a), I designates the interfaces, which are treated for convenience as
additional thin layers. To determine δN1/N2, X is a multilayer, X = [N1(3)/N2(3)]N , where the
common thickness, tN1 = tN2 = 3 nm, is chosen to be larger than typical interface thicknesses
(∼0.6–1.0 nm) [49], so that N1 and N2 represent mostly ‘bulk’ material, yet small enough so
that the spin-flipping due to finite lN1

sf and lN2
sf is generally small compared to that due to δN1/N2.

For most interfaces studied so far, N2 = Cu, simplifying the analysis. The middle of the sample
then looks like figure 8(a) [48].

2.2.2.(b2(a)). X = N. Inserting X = N has two effects upon the EBSV, first adding the
thickness tN of N, and second adding two N/Cu interfaces.

If, first, we neglect the two interfaces, VF theory can be approximated by [48]

A�R ∝ exp[−tN/ lN
sf ]/(AR0 + ARN). (11)

Here AR0 is the contribution to the denominator from the EBSV without the insert, ARN is the
specific resistance increase due to the insert N, and the constant of proportionality depends upon
the bulk and interfacial spin asymmetry parameters for Py. When tN � lN

sf , ARN is just ρNtN
(still neglecting the interfaces), which increases linearly with tN. When tN 
 lN

sf , ARN = ρNlN
sf ,

a constant. Thus, strictly, a simple exponential decay occurs only for tN 
 lN
sf .
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Figure 8. (a) Schematic of an EBSV with an X = [N1(3)/N2(1)]N multilayer insert. (b) Calculated
log(A�R) versus N for such an insert. The dashed line is equation (12) with a constant
denominator. To simplify, in both cases we have assumed lN1

sf = lN2
sf = ∞. From [48].

Including the two N/Cu interfaces complicates equation (11), as described in [48].
Figure 7(b) shows the resulting variation of log(A�R) versus tX for lN

sf = 10 nm and neglecting
any spin-flip scattering at the N/Cu interfaces. For a detailed fit to experimental data, such
interfacial spin-flipping must be included, but it does not change the qualitative form of the
curve. The initial rapid decay of log(A�R) in figure 7(b) is due to the formation of the two
N/Cu interfaces, which contribute to the term ARN in the denominator of equation (11) (and
can also add interfacial spin-flipping). The slower, longer-range decay comes mostly from the
exponential term in equation (11) after the interfaces have completely formed. When tN > lN

sf ,
the slope of the full curve approximates that of equation (11) with a constant denominator—the
dashed curve in figure 7(b).

Figure 9 [48] shows examples of log(A�R) versus tN for several different N. The
residual resistivities, ρ0, determined from separately sputtered thin films of the metals, are
given in table 2. In two cases, there is little or no interfacial contribution: (a) the dilute alloy
N = Cu(6% Pt), which should have no real interface with Cu; and (b) N = Ag, where both
the Cu/Ag interface specific resistance and interfacial spin-flipping are small [48, 49]. For
Cu(Pt)/Cu, log(A�R) versus tN is close to a single exponential, dominated by the contribution
from lN

sf . For Cu/Ag, lN
sf is long enough that the variation of log(A�R) is dominated by the

ARN in the denominator of equation (11). In contrast, V, Nb, and W, all have relatively large
interface specific resistances [48], but small to large interfacial spin-flipping (see table 4). In
these cases, the additional resistances (and spin-flipping), produced as the interfaces form,
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Figure 9. log(A�R) versus t for X = Ag, CuPt, V, Nb, W, and FeMn. With the exception of FeMn,
where the curve is just a guide to the eye, the solid and dashed curves are fits to the VF theory with
the parameters in tables 2 and 3. From [48].

dominate the initial decrease of A�R as tN increases from tN = 0, leading to a rapid falloff
of log(A�R) with increasing tN. Only after the interfaces are fully formed should the rate
of falloff decrease to close to that due to lN

sf alone. Data such as those for V, Nb, and W in
figure 9 can be analysed for lN

sf either by fitting the data for large tN to the single exponential
exp(−tN/ lN

sf) of equation (11), or by making a complete fit with VF theory taking account
of the interface specific resistance and interfacial spin-flipping. To determine these additional
parameters requires a simultaneous fit to data with inserts of [N/Cu]N interfaces, as we discuss
next. In the range of thicknesses initially studied, the decreases of the data for V and Nb beyond
the ‘knees’ in figure 9 are so slow (i.e., comparable to what is expected just from the additional
term ARN in the denominator of equation (11)) that only lower bounds on lN

sf could be derived.
Extensions to thicker layers provided the values of lV

sf [50] and lNb
sf [51] listed in table 2. Finally,

the spin-flipping in FeMn in figure 9 is so strong that it could not be distinguished from just
interfacial spin-flipping.

2.2.2.(b2(b)). X = [N1/N2]N . To determine ARN1/N2 and δN1/N2 one uses a multilayer
insert of the form X = [N1(3)/N2(3)]N , with fixed layer thicknesses of 3 nm for both N1 and
N2 (figure 8(a)). VF theory can be approximated by

A�R ∝ exp[−2N δN1/N2 − N (3/ lN1
sf ) − N (3/ lN2

sf )]/(AR0 + ARX), (12)
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Figure 10. log(A�R) versus N for X = [Cu/Ag]N , [Cu/V]N , [Cu/Nb]N , and [Cu/W]N . The
solid, broken, and dotted curves are fits using VF theory and the parameters in tables 2 and 3. The
dashed curve indicates the expected behaviour for δCu/V = 0. From [48].

where ARX is the contribution of the insert X, and exponential decay is due to spin-flipping
at the interfaces and also within the N1 and N2 layers. In figure 8(b) we compare A�R for
equation (12) with a constant denominator—dashed curve, with a more complete fit to the
VF equations—solid curve, where for simplicity in both cases we took lN1

sf = lN2
sf = ∞.

Equation (12) then approximates the slope of the solid curve for N greater than ‘a few’.
Figure 10 [48] shows plots of log(A�R) versus N for multilayer inserts of X = [Ag/Cu]N ,
[V/Cu]N , [Nb/Cu]N , and [W/Cu]N . Values of 2ARN1/N2 and δN1/N2 for these and other
interfaces are given in table 4. The procedure used to determine δN1/N2 with EBSVs is the
same as that used to determine lN

sf , and its use for lN
sf has been validated as discussed at the end

of section 2.2.2.(a). It, thus, seems likely to be valid for δN1/N2. However, there are as yet no
independent measurements or calculations of δN1/N2. Thus the fundamental significance of the
values listed is not yet clear. We do not know if different techniques will give similar values, or
if the values given are sensitive to interfacial structure and/or intermixing.

Strictly, this procedure works only for two non-magnetic (N) metals, since inserting an
F-metal into the middle of the EBSV fundamentally changes its magnetic structure. It might
be possible to keep the direction of magnetization of such a middle layer fixed, and thereby
simplify the problem enough to extract spin-flip information at an F/N interface, but this
procedure has not yet been implemented. For the moment, there is no established technique for
reliably measuring δF/N for F/N interfaces. The first inference of a non-zero δF/N(δCo/Cu ∼ 0.25
at 4.2 K) was made in [52] to rationalize, within the VF theory, the difference between data for
‘interleaved’ and ‘separated’ Co/Cu multilayers as described in detail in appendix C. This same
value was later shown to help explain both the CPP-MR of Co/Cu EBSVs [16] and effects of
adding internal interfaces (laminating) on CPP-MR [53]. We note in passing that the difference
in AR data for interleaved and separated samples of Co/Ag in figure 16 of [16] suggests that
a similar analysis would give a roughly similar value for δCo/Ag. While, together, these three

18



J. Phys.: Condens. Matter 19 (2007) 183201 Topical Review

studies strongly suggest a non-zero δCo/Cu, they are not quite definitive, because they assume a
long lsf (which, as we note in sections 2.2.2.(b1) and 2.2.2.(c1), is probable, but not absolutely
sure), and they infer a non-zero δCo/Cu to achieve another goal, not from measurements designed
explicitly to detect it. Three additional studies inferring non-zero values of δF/N have recently
been published. Strong spin-flipping (δPy/Cu ∼ 0.95) at Py/Cu interfaces at 293 K was inferred
from failure of an LNL signal to be as large as expected [54]. We worry that the model and
parameters are not well enough established to reach this conclusion. Values of δF/N ≈ 0.3
at 293 K for F/N = Co/Ru and Py/Cu were derived indirectly from fits to CPP-MR data in
nanopillars [55] {Note: the first author (Manchon) of [55] informs us that the value in table I
of [55] of δF/N = 0.25 for Co90Fe10 was simply taken equal to that for Co/Cu (we agree with
this assumption), and that the value of δF/N = 0.33 listed for Ni50Fe50 was actually derived for
the Py data of [15]}. A value of δ ∼ 0.5 for Co50Fe50 at 4 and 300 K was derived from fits
to A�R and AR data for nanopillars with laminated (internal interfaces) Co/Cu layers [56].
These latter two studies used bulk and interface parameters from CPP-MR/S measurements at
4.2 K, taking them to be temperature independent. While a weak temperature dependence is
plausible [57], complete temperature independence seems less likely, and it is not clear that the
CPP-MR/S parameters will all be quantitatively applicable to nanopillars with different layer
residual resistivities and microstructures. Also, in the laminated study, the Cu layers were so
thin (0.3 nm) [56] that it is not clear that the interfaces were fully formed and independent [53].
Taken together, these more recent results modestly strengthen the case for a non-zero δF/N.
Finally, a recent paper presents a potential way to use LNL measurements to derive information
about δF/N as a function of temperature [58]. Combined with the data for δN1/N2 in table 4,
these results suggest that some spin flipping at F/N interfaces is likely. However, because the
derivations of non-zero δF/N are indirect, and most depend strongly upon assumptions about
models and parameters that are not clear cut, we view them (with the possible exception of
Co/Cu) as highly uncertain. We, thus, describe these studies, but do not collect the inferred
values of δF/N into a separate table. Non-zero values of δF/N would also require a source. One
such source is spin–orbit scattering. A crude spin–orbit argument in [16] produced δCo/Cu ∼ 0.2
for a 50%–50% Co/Cu interface alloy, a value comparable to the inferred δCo/Cu = 0.25.
Another such source is moment non-collinearity at an F/N interface. Such non-collinearity at
Py/Cu interfaces has been proposed [59], but apparently not at Co/Cu ones [59]. We conclude
that spin-flipping at F/N interfaces requires more study, both experimental and theoretical.

2.2.2(c). CPP-NW/ML. The second geometry used to find lF
sf and lN

sf from the CPP-MR
involves nanowires. This geometry has the advantage that measurements can be extended to
room temperature.

2.2.2.(c1). For lF
sf, an inverted form of equation (7a) can be generalized using the VF

equations to include lF
sf. In the limits tF 
 lF

sf; tN � lN
sf , one obtains [25, 60]

RP/�R = [(1 − β2
F)tF]/(2pβ2

FlF
sf). (13)

Here, because it was not clear how close the nanowire multilayers approached a true AP
configuration, the parameter p was introduced as the fraction of the AP configuration between
adjacent layers (p = 1 is AP). Figure 11 [43] shows a plot of Rp/�R versus tCo. Later
analysis in [61], assuming p = 0.85 and βCo = 0.36, gave lCo

sf = 59 nm at 77 K and 39 nm
at 295 K as listed in table 3. These values are likely quite uncertain: for example, choosing
βCo = 0.46 [11, 62], would give lCo

sf = 33 nm at 77 K and 22 nm at 295 K.
For Py, to ensure p close to 1, the multilayers were made with alternating thin (10 nm) and

thick (100 or 500 nm) Cu layers. The dipolar interaction then coupled antiferromagnetically
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Figure 11. R(P)/�R versus tCo for [Co/Cu]N nanowires at 77 and 295 K. From [43].

Figure 12. Lateral (L) geometries for standard and non-local (NL) measurements. (a) lateral spin-
valve film with standard (#1) and non-local (NL) (#2) current and voltage connections. (b) LNL-
cross (LNL/C) geometry with F1 and F2 layers of different widths. (c) LNL/+ geometry with
additional N2 and/or F3 cross-strips. (d) LNL/TT three-terminal device.

the Py layers separated by only 10 nm, but these coupled Py pairs were uncoupled from each
other. The resulting lPy

sf = 4.3 nm at 77 K is listed in table 3 [25].

2.2.2(c2). The equation needed to derive lN
sf with nanowires is more complex, necessitating a

detailed numerical fit to the data. The value of lCu
sf listed in table 2 for this method is shorter

than those found by other methods, probably because electrodeposition gives ‘dilute alloys’ of
Co and Cu (alloying probably worse in the Co than in the Cu) rather than pure metals [63, 64],
and the additional scattering reduces lCu

sf .
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2.2.2(d). CPP-NP. So far, there is only one example of nanopillars used to derive lN
sf [65],

giving an RT value of lCu
sf = 190 ± 20 nm. As shown in table 2, this value is shorter than most

of those derived by other methods; the reason why is not yet clear.

2.3. Lateral (L) and non-local (NL) geometries

The advantages of experiments with lateral (L) geometry are that they can be carried out at
both room and low temperatures, and they can be used for long lN

sf . There are, however, also
disadvantages in some published studies if F/N interfaces are of low resistance: (a) the current
density is not uniform, and (b) the equations used to analyse the data are complex and there
is disagreement about the form(s) to use. For these reasons, some published values from LNL
studies look uncertain. As we explain below, the most reliable are Hanle studies and ones with
high-resistance (e.g., tunnelling or very dirty metal) contacts.

The geometries used in L and LNL experiments are shown in figure 12. The quantity
measured is usually �R = R(AP) − R(P), the difference in resistance between states where
the magnetizations of the F-layers F1 and F2 are AP or P to each other. The models used to
analyse most published LNL data are 1D models that assume that uniform charge and spin
currents flow through the sample. References [54, 66] showed that this assumption is violated
when the F/N interfaces are metallic (i.e., low or moderate resistance) and the length L of the
N-metal of interest is not 
WN, the width of the N-metal. For such interfaces, the current
injected from F1 into N is non-uniform because the lower resistivity N-metal partly shorts out
the higher-resistivity F-strip [54, 66, 67]. Only when L 
 WN is the resulting initially non-
uniform spin-current able to become more nearly uniform by the time it reaches the other cross-
strip, F2. Problems with non-uniform currents are exacerbated by application of a magnetic
field (see, e.g., [68, 69]). In addition, several studies with metallic interfaces used an equation
(e.g., equation (15) below) that does not properly take account of the interface resistances as
in equation (16a). We will see that use of equation (15) could yield too small a value of lN

sf .
Because the techniques used in most LNL studies with metallic F/N interfaces involve the
possibility of contamination of those interfaces during preparation, it is important for authors
to independently measure and specify their F/N interface resistances to show if they are less
than, comparable to, or greater than those of the F- and N-metals (see discussion associated
with equation (16) below).

Since this is not a theoretical review (see, e.g., [28]), we do not go into details of
models and analyses, but focus only on the different equations that are most relevant to an
experimentalist.

We begin with the lateral (L) geometries shown in figure 12. Figure 12(a) shows a
lateral thin-film magnetoresistance geometry (LMR) used for standard (a-#1) or LNL (a-
#2) measurements. Because the (a-#1) geometry gives difficulties in eliminating unwanted
anisotropic MR and Hall effect contributions [70], most studies use the LNL geometry shown
as (a-#2) or variants thereof. Figures 12(b)–(d) show three such variants. We label figure 12(b)
with its cross as LNL/C and figure 12(c) with extra strips as LNL/+. Finally, figure 12(d)
shows what is called a lateral three-terminal device (LNL/TT). If the contacts between the F
and N layers are tunnelling contacts, we label the sample as LNL/T. A lateral measurement
involving a spin-dependent Hall effect (L/SDHE) will also be noted.

2.3.1. LNL with the Hanle effect (LNL/H). The first geometry used to determine lN
sf was

the LNL geometry of figure 12(a) #2, combined with the Hanle effect—LNL/H [71]. lAl
sf

was measured on a rolled and then annealed Al foil with residual resistance ratio RRR =
R(RT)/R(4.2 K) = 1100, much higher than that of any other sample covered in this review.
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In the Hanle effect, a magnetic field, B⊥, applied perpendicular to the sample plane, causes
the moments of electrons to precess as the electrons move from F1 to F2. Because diffusive
transport gives a broad distribution of the number of electrons arriving at F2 as a function of
time, and the longer the time, the more likely for the moment to have flipped, the precession
causes the voltage at F2 (whose moment is aligned parallel to that of F1) to decrease with
increasing B⊥ (more precisely with increasing Larmour frequency, ω⊥ = (gμB B⊥)/h̄, where
g ∼ 2 is the electron g-factor, μB is the Bohr magneton, and h̄ is Planck’s constant divided
by 2π ). The detailed equation, which is fitted numerically, is given in [72]. Whereas the first
Hanle measurements were made with metallic F/N contacts, a more recent study of Al was
made with tunnelling contacts. In that case, the values of lAl

sf found from LNL/T and LNL/H
were closely the same [73].

2.3.2. LNL with three-terminal geometry (LNL/TT). The second geometry tried involved three
terminals (TT)—figure 12(d). It was used for Au [74] and Nb [75]. The current flow in this
geometry cannot be uniform, and non-uniform currents can lead to unwanted magnetoresistive
effects [68, 69]. As shown in table 2, the values of lAu

sf ∼ 1.5 μm and lNb
sf ∼ 0.8 μm inferred

from this geometry are both an order of magnitude larger than those for samples of comparable
purity found with other techniques. For additional issues see [76].

2.3.3. LNL with a cross geometry (LNL/C). The next studies used a non-local geometry
involving a cross (figure 12(b)), LNL/C, for both Cu [70, 77] and Al [77]. Assuming low-
resistance, metallic interfaces, the data were analysed using equation (14).

For general L: �R = [β2
F RNe−L/2lN

sf )]/(M + 1)[M sinh(L/2lN
sf) + cosh(L/2lN

sf)] (14)

where M = (AN RN /AF RF)(1 − β2
F) = (ρNlN

sf/ρFlF
sf)(1 − β2

F) and βF was defined above.
For Py and Cu, M ∼ [(10)/(0.7)](0.5–0.7) ∼ 10. With such a large M , the sinh term
dominates, and in the experimental limit L � lN

sf , equation (14) becomes similar to our preferred
equation (16a), below, but with a few differences due to the different geometry (cross versus
standard non-local). As in equation (16a), the size of �R is determined not by β2

F alone, but a
product, here ≈[βF(ρFlF

sf)/{(1 − β2
F)(ρNlN

sf)}]2, that can be �β2
F.

These pioneering studies of e-beam fabricated samples with metallic interfaces were
criticized [67] for: (a) non-uniform current injection from Py into the N-metal; (b) neglect
of interface resistances, which [67] claimed should dominate; and (c) possible unwanted
contributions from anisotropic magnetoresistance. The correctness and significance of these
arguments was strongly disputed [78]. As we have noted above, (a) represents a potential
problem for all LNL measurements with metallic interfaces. But in the present experiments, its
effect was mitigated by using samples with L 
 W and mostly L � lN

sf . The resulting values
of lN

sf are competitive (see table 2 and figures 14 and 16). But, as noted in [77], non-uniform
current injection can still affect the inferred βF by a factor ∼2–3.

2.3.4. LNL with metallic interfaces (LNL/M). Some subsequent studies involved a non-local
geometry with metallic interfaces and without a cross. As noted above, unless these have
L 
 W , the 1D equations used for analysis may not be applicable because of a current
uniformity problem. For two of these studies [79, 80], there is also another issue, involving
the equation used for analysis. This equation was

A�R = [P1 P2 RN](e−L/lN
sf ). (15)

Here P1 and P2 are injector and detector spin polarization values, and RN = ρNlN
sf/A, where A
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Figure 13. �R versus L for: (a) LNL/T Co/I/Al/I/Co samples—• = 4.2 K, ◦ = 293 K, data
from Jedema et al [73]; and (b) LNL Py/Cu/Py samples— = 4.2 K, data from Garzon [83],
� = 293 K, data from Kimura et al [84]. After [82].

Figure 14. lCu
sf versus 1/ρCu for Cu samples in table 2. References: Pierre [91]; Gougam [97];

Jedema [70, 77]; Takahashi [82]; Garzon [58]; Bergmann, [96], Ji [80]; Kimura [84]; Doudin [64];
Piraux [43]; Albert [65]. The line is a least-squares fit to the data for T � 4.2 K (filled symbols)
constrained to go to (0, 0) and neglecting the symbols (+ and ×). Note: for pure Cu at 293 K,
1/ρCu = 0.060 (n	 m)−1 [40].

is the cross-sectional area of the N-stripe. From equation (15), one should obtain lN
sf from the

slope of a straight line on a plot of log(A�R) versus L.
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Figure 15. lAg
sf versus 1/ρAg for Ag samples in table 2. References: Pierre [91]; Gougam [97];

Bergmann [96]; Godfrey [86]. The solid line is a least-squares fit to the data for T < 2 K (filled
symbols) constrained to go to (0, 0). The dashed line is a similar fit to the data for T = 79 and
298 K. We omit from figure 15 the data point in table 2 by Park et al [48] which set only an extreme
lower bound on lAg

sf . Note: for pure Ag at 293 K, 1/ρAg = 0.063 (n	 m)−1 [40].

More recently, Takahashi et al [81, 82] generalized the 1D equations to explicitly include
the F/N interface resistances Ri = ARFi /N/AJ. Here ARFi /N is the AR for the Fi/N
interface, and AJ is the (junction) area of overlap of the Fi and N layers in the LNL geometry
(figure 12(a)#2). They get:

(1) Ri = R1, R2 � RF � RN

�R = [4p2
F/(1 − p2

F)
2][RN(RF/RN)2][e−L/lN

sf /(1 − e−2L/lN
sf )] (16a)

(2) RF � Ri � RN �R = [4P2
J /(1 − P2

J )2][RN(R1 R2/R2
N)][e−L/lN

sf /(1 − e−2L/lN
sf )] (16b)

(3) Ri 
 RN 
 RF �R = P2
J RNe−L/lN

sf . (16c)

Here pF is the polarization within the F-metal (equivalent to βF defined above), PJ is the
polarization of the F/N interface (equivalent to γF/N defined above); Ri = ARFi /N/AJ, with
i, J = 1, 2; RF = ρFlF

sf/AF; and RN = ρNlN
sf/AN. To estimate RF, RN, and Ri for clean

metallic interfaces, we use values from tables 2 and 3 and [11]. At 4.2 K, a Cu strip of
W = 100, t = 40 nm, combined with ρCulCu

sf = 20 f	 m2, gives RN ≈ 5 	. At 4.2 K, a Py
strip of W = 100 nm, t = 40 nm, and ρPylPy

sf = 0.7 f	 m2 gives RF ≈ 0.2 	. Equation (16a)
would then be appropriate for a metallic Py/Cu interface with ARPy/Cu = 0.5 f	 m2 [11] and
A = (100 nm)2, giving Ri = 0.05 	. However, as noted above, contamination of the F/N
interface during sample preparation could increase Ri . To justify using equation (16c), Ri

would have to be more than 100 times larger than our estimate.
Note that only equation (16c) for high-resistance (e.g., tunnelling or very dirty metallic)

interfaces contains just a single exponential. Both equation (16a) for low-resistance metallic
interfaces, and (16b) for intermediate-resistance interfaces, are more complex, reducing to a
single exponential only when L 
 lN

sf . Figure 13 [73, 82–84] should make the difference clear.
The upper two sets of data, for tunnelling interfaces, are consistent with the single exponentials
predicted by equation (16c). While the data for the lower two sets, for metallic interfaces, could
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Figure 16. lAl
sf versus 1/ρAl for Al samples in table 2. References: Jedema [73]; Jedema (03) [77];

Johnson [3]; Santhanam [24, 99]; Wind [100]; Poli [88]; Valenzuela [89]; Otani [90]. The straight
line is a least-squares fit to the 4 K data, constrained to go to (0, 0). We use a log–log inset plot to
place the higher-purity samples of Johnson and Otani; the line in the inset is the same as in the main
figure. Note: for pure Al at 293 K, 1/ρAl = 0.038 (n	 m)−1 [40].

be approximately fitted by single exponentials as per equation (15), fits to equation (16a) (filled
squares and solid curve, lN

sf ∼ 920 nm at 4.2 K, open squares and dashed curve, lN
sf ∼ 700 nm at

295 K) show more complex behaviour, where the data should vary as a single exponential only
when L � 2lN

sf . If equation (16a) is correct, then analysing data with clean metallic interfaces
assuming just a single exponential (equation (15)) can give an incorrect lN

sf (too short if L does
not extend far enough), as well as incorrect values for the polarization pF. We emphasize that to
derive pF from equation (16a) requires knowledge of both RN and RF, and to derive lF

sf requires
knowledge of both RN and pF. An inferred too-short lN

sf could also mislead about whether the
data are in the correct regime for the single-exponential limit of equation (16a).

2.3.5. LNL with multiple cross-strips (L N L/+). We use this acronym for LNL studies (such
as [84–87]) that involve additional N2 (Cu or Au) or F3 (Py) strips crossing the main N(Cu) strip
as in figure 12(c). Multiple F-strips have the potential advantage that different values of L are
all associated with the same N-strip, instead of with different N-strips that might have different
impurity contents. However, Kimura et al [84, 85] reported that, for low-resistance metallic
interfaces, the presence of additional strips affects the analysis, reducing the magnitude of the
signal by allowing ‘spin-accumulation to leak out through these additional leads’. Assuming a
simplified 1D analysis, they derived an equation relating the resistance RSM = RMlM

sf /AM of
an extra strip to the measured �R. From this analysis they derived values of lM

sf listed in tables 2
and 3 [84]. Because their analysis does not explicitly include the interface resistances as in
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equation (16), we are not sure how reliable it is. Their results are similar, but not identical, to
those found in other ways. In contrast, Godfrey and Johnson [86], who studied lAg

sf using sets of
four separate, but different width, Py strips on a single Ag strip, claimed that their tests showed
no direct effects of extra strips outside of their uncertainties. But their value of lAg

sf , may have
been affected by their use of a single-exponential fit. Also, effects of extra leads might have
been reduced by interface resistances (ARPy/Ag = 2.4f	m2) about five times larger than our
estimate above. For reasons similar to why we worry about equation (15), we worry also about
the equation that they used to estimate lPy

sf , which gave an outlying value in table 3 for samples
with comparable values of ρPy. Lastly, Ku et al [87] measured lAu

sf using multiple Py strips
across the Au. They found no effect of the multiple strips, but their reported Py/Au interface
resistance was unusually large (ARPy/Au = 110 f	 m2).

2.3.6. LNL with tunnelling interfaces (LNL/T). Finally, the last acronym, LNL/T, designates
LNL measurements (so far only of lAl

sf ) involving tunnelling F/N interfaces made by oxidizing
the surface of the Al before the F-layers were deposited. Reference [73] compared the results of
LNL/T measurements with those of LNL/H measurements on samples with L 
 WN. The two
techniques gave very similar results. The combination of tunnelling interfaces, L 
 WN, and
Hanle measurements, looks to be especially reliable. By comparing LNL/T data for different
thicknesses of Al films, the authors of reference [88] measured lAl

sf and deduced that spin-
relaxation at 4 K is weaker at the film surface than in the bulk. Reference [89] gives values of
lAl
sf and shows spin Hall effect data.

2.3.7. LNL with spin-dependent Hall effect (LNL/SDHE). An lAl
sf ∼ 5 μm at 2 K was inferred

from spin-dependent Hall effect measurements [90].

2.4. lso and lN
sf from weak-localization (WL)

To obtain a large weak-localization (WL) signal, magnetoresistance measurements for WL
analysis are made at T � 40 K on evaporated or sputtered thin films, sometimes quench-
condensed to increase the residual resistivity. WL measurements can be in ‘quasi-1D’, ‘quasi-
2D’, or 3D regimes, depending upon whether the phase coherence length, λφ , is larger than
both W and t (1D), just t (2D), or none of L, W , and t (3D). We include in this review data in
the 2D and 1D regimes of ‘nominally pure metals’. In both two dimensions and one dimension,
spin–orbit scattering changes the sign of the WL contribution to the MR. The spin–orbit length,
lso, can be determined from a WL equation if the sample wires are in the diffusive regime and
far from the metal–insulator transition [91]. In practice, if lso 
 λφ , or lso � λφ , the data just
determine λφ . So one must choose a measuring temperature so that the rapidly varying λφ is
comparable to the temperature independent lso. If spin–orbit scattering is dominant, lso = lN

sf .
We list WL values of lso = lN

sf for Ag, Au, Cu, Al, and Mg in table 2. Values of lso for Mg-based
alloys can be found in [92, 93].

3. Data tables and comments

Section 3 contains four tables. Each table is followed by a brief discussion of the data it
contains. Tables 1–3 contain data obtained by different techniques, allowing the results of
these different techniques to be compared. The 6th columns of tables 2 and 3 contain values of
the product ρlsf, to test whether lsf is proportional to the transport mean-free-path, λt.

To remind the reader of the acronyms for different measuring techniques defined earlier in
this review, we begin this section with a listing of those acronyms.
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The techniques used in these tables are listed by acronyms:

CPP-S/ML CPP-MR using superconducting cross-strips and multilayers.
CPP-S/SV CPP-MR using superconducting cross-strips and exchange-biased spin-valves.
CPP-NW CPP-MR using electrodeposited nanowire multilayers.
CPP-NP CPP-MR using electron-beam lithography produced nanopillar trilayers.
WL Weak localization.
LNL/M Lateral non-local MR with metallic contacts and no other special conditions
LNL/H Lateral non-local MR using the Hanle effect
LNL/C Lateral non-local MR using a cross-geometry for the N-metal.
LNL/+ Lateral non-local MR with an extra strip or strips across the N-metal.
LNL/T Lateral non-local MR using tunnelling contacts
LNL/TT Lateral non-local MR using three terminals.
LNL/SDHE Lateral non-local spin-dependent Hall effect

Table 1. Spin-diffusion lengths, lN
sf , in non-magnetic alloys.

Alloy T (K) Technique lN
sf (nm) (exp) lN

sf (nm) (CESR) ρ0 (n	 m) Ref.

Ag (4% Sn) 4.2 CPP-S/ML �26 200 ± 20 [12]
Ag (6% Pt) 4.2 CPP-S/ML ≈10 ≈7 110 ± 20 [12]
Ag (6% Mn) 4.2 CPP-S/ML ≈11 ≈12a 110 ± 25 [12]
Ag (9% Mn) 4.2 CPP-S/ML ≈7 ≈9a 155 ± 20 [12]
Cu (4% Ge) 4.2 CPP-S/ML �50 ≈50 182 ± 20 [45]
Cu (6% Pt) 4.2 CPP-S/ML ≈8 ≈7 130 ± 10 [12]
Cu (6% Pt) 4.2 CPP-S/SV 11 ± 3 ≈7 160 ± 30 [48]
Cu (7% Mn) 4.2 CPP-S/ML ≈2.8 3 ± 1.5a 270 ± 30 [12]
Cu (6.9% Ni) 4.2 CPP-S/ML 23 22.4 110 [94]
Cu (10% Ni) 4.2 CPP-S/ML 14 14.7 175 [94]
Cu (14% Ni) 4.2 CPP-S/ML 10 11.9 191 [94]
Cu (22.7% Ni) 4.2 CPP-S/ML 7.5 6.9 355 [94]
Cu (22.7% Ni) 4.2 CPP-S/SV 8.2 ± 0.6 7.4 310 ± 20 [95]

a Values calculated for spin–spin scattering in [27].

Table 1 contains values of lN
sf at 4.2 K for alloys with known concentrations of specific

impurities. The values were found by two different techniques—CPP-S/ML (section 2.2.2(a))
and CPP-S/SV (section 2.2.2(b))—the results of which agree in the two cases of overlap. As
the scattering in each alloy is dominated by a single source, each lN

sf should be intrinsic to that
alloy. For impurities without a local magnetic moment, lN

sf should be dominated by spin–orbit
scattering and thus calculable from CESR-derived spin–orbit cross-section for that impurity
in the given host [26] plus the constant ρblb for that host, as described by equations (3)–
(5). All measured and calculated values are in good agreement. For impurities with a local
moment, more complex spin–spin calculations are needed [27]. Here, too, the measured and
calculated [27] (labelled by a in table 1) values agree. The agreements between values of
lN
sf found by two different techniques, and between measured and calculated values, together

suggest that the VF theory used to analyse the data is appropriate, and that both experimental
techniques correctly measure lN

sf . In contrast, the fact that larger lN
sf s for AgSn and CuGe

are associated with larger residual resistivities, ρ0, while smaller lN
sf s for AgPt and CuPt,

are associated with smaller ρ0s, makes it hard to see how ‘mean free path’ effects alone
(appendix C) could explain these values or the data in figures 3, 4, 9. Explaining these data
seems to require spin-flipping.
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Table 2. Spin-diffusion lengths, lN
sf , in nominally ‘pure’ non-magnetic metals.

Metal T (K) Technique lN
sf (nm) ρ0;ρ(T )(n	 m) ρlN

sf (f	 m2) Ref.

Au 4.5 WL 10.5 665a 7 [96]
Au �70 LNL/TT 1500 ± 400 [74]
Au �4 WL 58.5 33a 2 [97]
Au �4 WL 85 25a 2 [91]

Au 4.2 CPP-S/SV 35+65
−10 19 ± 6 0.7+1.8

−0.4 [98]
Au 10 LNL/M 63 ± 15 [79]
Au 293 LNL/+ 60 52 3 [84]
Au 15 LNL/+ 168 40 7 [87]
Cu 4.5 WL 39 720a 28 [96]
Cu 77 CPP-NW 140 ± 15 31 4 [43]
Cu 300 CPP-NW 36 ± 14 20–65 0.4–3 [64]
Cu 4.2 LNL/C 1000 ± 200 14 14 [70, 77]
Cu 293 LNL/C 350 ± 50 29 10 [70, 77]
Cu �4 WL 520 35a 18 [97]
Cu �4 WL 330–670 17–48a 11–16 [91]
Cu 293 CPP-NP 170 ± 40 [65]
Cu 293 LNL/M;LNL/+ 500 21 11 [84]
Cu 293 LNL/M 700 21 15 [82]
Cu 4.2 LNL/M 920 34 31 [82]
Cu 4.2 LNL/H 546 34 19 [58]
Cu 10 LNL/M 200 ± 20 13.6 3 [80]
Cu 300 LNL/M �110 34 �4 [80]
Al ∼4 WL 300–570 23–68a 11–20 [24, 99]
Al 4.3 LNL/H 450 000 ∼0.024 11 [3, 71]
Al 37 LNL/H 170 000 ∼0.024 4 [3, 71]
Al ∼4 WL 450–560 22–36a 12–16 [100]
Al 4.2 LNL/T 650 59 38 [73]
Al 293 LNL/T 350 91 32 [73]
Al 4.2 LNL/C 1200 13 16 [77]
Al 293 LNL/C 600 32 19 [77]
Al <100 L/SDHE ∼5000 7.8 39 [90]
Al 2 LNL/T 400± 50 [101]
Al 293 LNL/T 350± 50 [101]
Al 4 LNL/T 660 20a 13 [88]
Al 293 LNL/T 330 [88]
Al 4.2 LNL/T 455 ± 15 95a 43 [89]
Al 4.2 LNL/T 705 ± 30 59a 42 [89]
Ag 4.5 WL 26–33 440–830a 26–33 [96]
Ag 4.2 CPP-S/SV >40 7 ± 2 >0.3 [48]
Ag �4 WL 750b 30a 23 [97]
Ag �4 WL 350–1000 21–55a 19–21 [91]
Ag 79 LNL/+ 132–195 35–40 5–7 [86]
Ag 298 LNL/+ 132–152 49–55 7 [86]
Cr 4.2 CPP-S/SV ∼4.5 180 ± 20 ∼0.8 [102]
Mg �4 WL 80–220 860–5500a 189–440 [103]
V 4.2 CPP-S/SV >40 105 ± 20 >4 [48]
V 4.2 CPP-S/SV 46 ± 5 105 ± 20 5 [50]
Nb 12 LNL/TT 780 ± 160 ∼50 39 [75]
Nb 4.2 CPP-S/SV 25+∞

−5 78 ± 15 2 [48]
Nb 4.2 CPP-S/SV 48 ± 3 60 ± 10 3 [51]

Pd 4.2 CPP-S/SV 25+10
−5 40 1 [104]

Ru 4.2 CPP-S/SV ∼14 95 1.3 [105]
Pt 4.2 CPP-S/SV 14 ± 6 42 0.6 [104]
W 4.2 CPP-S/SV 4.8 ± 1 92 ± 10 0.4 [48]

a For WL samples, ρ0 = (RWt)/L includes surface scattering, as the films are thin—typically
t ∼ 20–50 nm.
b Corrected misprint of 75 for Ag in [97].
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Table 2 contains values of lN
sf for nominally ‘pure’ non-magnetic metals found in several

different ways. For each metal, the values are listed in chronological order. The values at room
temperature should be intrinsic if scattering by phonons dominates the resistivity. To show the
reader where this intrinsic value would be expected, we list in the captions to figures 14–16 the
values of (ρN)−1 at 293 K for high-purity N = Cu (figure 14), Ag (figure 15), and Al (figure 16).
If, however, a substantial fraction of that resistivity is due to defects, lN

sf will not be intrinsic. In
contrast, the values at low temperatures (4.2, 10 K) cannot be intrinsic, since the lattice defects
or impurities that dominate the scattering are unknown. To test the hope that samples with
similar residual resistivities might be dominated by similar impurities, giving similar values of
lN
sf that scale roughly inversely with the resistivity, ρ, the next to last column of table 2 contains

values of ρlN
sf . As explicit examples of such tests, figures 14 (for Cu), 15 (for Ag), and 16 (for

Al) show plots of lN
sf versus 1/ρ, including several individual samples where only ranges are

given in table 2. Correlations in both figures are by no means perfect.
In general, comparing values in table 2 for individual metals at either 4.2 or 293 K

shows substantial variations. These variations are due partly to variations in sample resistivity
(see column ρlN

sf ), but partly to experimental or analysis problems. As noted in section 2.3,
values of lN

sf from some LNL studies with metallic contacts are uncertain, due to the use
of inappropriate equations, and/or non-uniform current flow, and/or the use of extra cross-
strips. As an example of effects of using different equations with the same data, compare the
293 K value of lCu

sf = 500 nm derived by Kimura et al [84] using a different equation with
lCu
sf = 700 nm derived by Takahashi et al [82] using equation (16a) (see figure 13).

Table 3. Spin-diffusion lengths, lF
sf , in ‘nominally pure’ and alloyed ferromagnetic metals.

Metal T (K) Technique lF
sf (nm) ρ0 (n	 m) ρ0lF

sf (f	 m2) Ref.

Co 77 CPP-NW 59 ± 18 160 ± 20 9 [61]
Co 300 CPP-NW 38 ± 12 210 ± 30 8 [61]
Co 4.2 CPP-S/SV �40 60 �2.4 [47]
Fe 4.2 CPP-S/SV 8.5 ± 1.5 40 0.34 [106]
Ni 4.2 CPP-S/SV 21 ± 2 33 ± 3 0.7 [107]
Py = Ni84Fe16 4.2 CPP-S/SV 5.5 ± 1 120 0.7 [13]
Py 77 CPP-NW 4.3 ± 1 [25]
Py 293 LNL/+ 3 278 0.8 [84]
Py 79 LNL/+ 14.5 236 3.4 [86]
Ni66Fe13Co21 4.2 CPP-S/SV 5.5 ± 1a 90 0.5 [108]
Co91Fe9 4.2 CPP-S/SV 12 ± 1 70 0.8 [46]
Ni93Cr3 4.2 CPP-S/SV 3 ± 1 230 0.7 [109]

a The value of lsf for Ni66Fe13Co21 was not derived from a detailed fit to the data, but rather assumed
from comparison of the data with those for Ni84Fe16.

The values of lF
sf in table 3 were derived in two different ways from CPP-MR measurements

with VF theory: (a) from variations of A�R with tF using CPP-S/SVs (section 2.2.2.(b1)),
or (b) from values of MR versus tF in CPP-NW (section 2.2.2.(c)). In principle, values of
lF
sf can also be derived from measurements of the magnitude of �R in lateral transport, but

we feel that such comparisons of absolute magnitudes with theories are usually less certain,
for the reasons discussed in section 2.3.4. To test for approximate proportionality of lF

sf to λ,
figure 17 shows a plot of values of lF

sf versus 1/ρF from CPP-MR measurements at 4.2 K. The
lCo
sf shown in the inset is anomalously long. This may well be because ρCo is dominated by

scattering from stacking faults, which might flip electron spins only weakly. But, as explained
in sections 2.2.2.(b1) and 2.2.2.(c1), there is a small possibility that the inferred values of lCo

sf
are too long. The value of l Fe

sf is put in the inset because otherwise it fell in the middle of the
sample listing on the figure. The straight line fit neglects the Co and Fe points.
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Figure 17. lF
sf versus 1/ρF for CPP-

MR samples in table 3. The main
figure contains values for Ni and
alloys, plus a best-fit straight line to
just those values and constrained to
go to (0, 0). The Insert contains this
same line plus values for Co and Fe.

Table 4. Spin-flipping parameters, δN1/N2 , at N1/N2 interfaces at 4.2 K.

Metals (N1/N2) T (K) Technique δN1/N2 2ARN1/N2 (f	 m2) Ref.

Ag/Cu 4.2 CPP-S/SV ∼0 0.1 [48]
V/Cu 4.2 CPP-S/SV 0.07 ± 0.04 2.3 [48]
Pd/Au 4.2 CPP-S/SV 0.08 ± 0.08 0.45 [30]

Au/Cu 4.2 CPP-S/SV 0.13+0.08
−0.02 0.3 [98]

Pt/Pd 4.2 CPP-S/SV 0.13 ± 0.08 0.28 [31]
Pd/Ag 4.2 CPP-S/SV 0.15 ± 0.08 0.7 [30]
Nb/Cu 4.2 CPP-S/SV 0.19 ± 0.05 2.2 [48]

Pd/Cu 4.2 CPP-S/SV 0.24+0.1
−0.05 0.9 [104]

Ru/Cu 4.2 CPP-S/SV ∼0.35 2.2 [105]
Pt/Cu 4.2 CPP-S/SV 0.9 ± 0.1 1.5 [104]
W/Cu 4.2 CPP-S/SV 0.96 ± 0.1 3.1 [48]

Table 4 contains published values of spin-flipping parameters, δN1/N2, for N1/N2 interfaces
at 4.2 K, determined using the technique described in section 2.2.2.(b2). The probability P of
spin-flipping at each interface is P = [1 − exp(−δ)]. In the hopes of elucidating the physics
involved, the values are ordered from smallest to largest. Note that, for Cu, δN1/N2 is smallest
when paired with low atomic number metals V and Ag, and largest when paired with high
atomic number metals Pt and W. Note also that there is no obvious correlation between δN1/N2

and 2ARN1/N2. Caveats about how fundamental these values are, and brief remarks about the
few published results for F/N interfaces, are given in section 2.2.2.(b2(b)). We do not place the
F/N results also in a table because we view most of them as highly uncertain.

4. Summary and conclusions

4.1. Summary of results

Table 1. Measured values of lN
sf for Cu- or Ag-based alloys in which scattering is dominated by

known concentrations of known impurities agree remarkably well with values calculated from
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the independently measured spin–orbit cross-sections or from analysis of spin–spin scattering.
Since the dominant impurity in each alloy, and its concentration, are known, we expect lN

sf
to be an intrinsic property of the alloy. The agreement between experimental and calculated
values supports this expectation. This agreement also leads us to conclude that the Valet–Fert
(VF) theory provides a good basis for evaluating CPP-MR data, and that the two independent
techniques used in these measurements both seem to be valid at the 10%–20% level. Table 1
also shows that different impurities can have very different spin–orbit or spin–spin cross-
sections, leading to very different values of lN

sf for a given impurity concentration.
Table 2. Measured values of lN

sf are listed for a variety of nominally ‘pure’ metals at
temperatures ranging from �4.2 to 293 K. In figures 14 (Cu), 15 (Ag), and 16 (Al), these values
are plotted against inverse resistivity (1/ρ) to see if they are proportional to the transport mean
free path, λt. In a few cases, there is apparent rough scaling, but such scaling is not general.
At cryogenic temperatures, the resistivity of such metals is dominated by scattering from an
unknown concentration of unknown impurities. Thus lN

sf is not intrinsic, but is essentially
unique to each sample, and need not grow linearly with total impurity content (roughly
measured by the residual resistivity, ρ0). For a sufficiently high-purity metal, where phonon
scattering is dominant, one might expect lN

sf at 293 K to be intrinsic. There is no evidence of
‘limiting high-purity’ values of lN

sf at 293 K for the samples in table 2 or in figures 14–16, where
we list in each caption the value of 1/ρN where this limiting value of lN

sf would be expected.
Table 3. Measured values of lF

sf are listed for several nominally ‘pure’ and alloyed F-metals,
mostly at 4.2 K. Except for Co, the values are all �20 nm. Figure C.1 shows that some of the
4.2 K values correlate with (1/ρF).

Table 4. Measured values of δN1/N2 are listed for several metal pairs. The values show some
correlation with difference in atomic number, as expected from simple spin–orbit arguments,
but no particular correlation with interface specific resistance, ARN1/N2.

In section 2.2.2.(b2(b)), we describe several inferences of non-zero values of δF/N, most of
which we view as highly uncertain.

4.2. Advantages and disadvantages of different measuring techniques

Current-perpendicular-to-plane MR with superconducting cross-strips (CPP-MR/S).

Advantages: The geometry is well controlled, crucial parameters can be measured
independently, and certain techniques seem to have been well validated for determining lN

sf ,
lF
sf, and δN1/N2.

Disadvantages: So far, measurements have been made only at T = 4.2 K, and
the technique has been used only for lN

sf , lF
sf � 100 nm. However, bulk and interface

asymmetry parameters and interface specific resistances might be only moderately sensitive
to temperature [57].

Current-perpendicular-to-plane MR with nanowires (CPP-MR/NW).

Advantages: In principle, lN
sf and lF

sf can be measured from below T = 4.2 K to above
T = 293 K. lF

sf can be determined from a straight-line plot when tF 
 lF
sf and tN � lN

sf
(equation (18)).

Disadvantages: Pure N- and F-layers are difficult to obtain; contamination of the F-layers
can be particularly severe. Determining lN

sf requires a numerical fit.

Lateral-non-local (LNL) measurements

Advantages: Long lN
sf can be measured from below T = 4.2 K to above T = 293 K. So

far, this technique has been used to measure lN
sf only in Ag, Al, Cu, and (with less certainty)
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Au. In principle, one can infer lF
sf, but less directly. The two published LNL estimates of lPy

sf ,
obtained in different ways, differ by almost a factor of five.

Disadvantages: Indirect determination of lF
sf requires knowing several experimental

parameters (see equation (16a)). To get uniform spin-current, the sample width must be much
less than the sample length (W � L). To use a simple single-exponential equation, low-
resistance F/N contacts require L > 2lN

sf , which can give weak signals. Combined, these
constraints mean that to measure short lN

sf will require narrow N-films.

Weak localization (WL)

Advantages: lso = lN
sf can be measured reliably at T � 40 K.

Disadvantages: To separate the effects of lso and λφ requires a measuring T such that λφ

is comparable to lso. This requirement is not necessarily too stringent, since λφ varies rapidly
with temperature.

4.3. Some needs for additional work

• Badly needed is a direct technique for measuring δF/N.
• Badly needed are calculations of δN1/N2 and δF/N, especially to establish whether there is a

large difference for ‘perfect’ versus ‘alloyed’ interfaces.
• A different way to measure δN1/N2 would be useful, to independently check the values in

table 4.
• The ability to produce narrower structures (W � 30 nm) should allow reliable LNL

measurements to be extended to metals with much smaller values of lN
sf than can be studied

with the W � 200 nm N-films of most published measurements.
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Appendix A. Definitions of parameters and spin-accumulation equations in terms of lN
sf

and lF
sf

A.1. Parameters and relationships

Within the F-metal we define parameters [7, 8]

ρ∗
F = (ρ

↓
F + ρ

↑
F )/4 (A.1)

and

βF = (ρ
↓
F − ρ

↑
F )/(ρ

↓
F + ρ

↑
F ). (A.2)

Additivity of conductivities for simple transport gives

σF = σ
↓
F + σ

↑
F . (A.3)

From σ = (1/ρ), we get (1/ρF) = (1/ρ
↓
F ) + (1/ρ

↑
F ), which can be rearranged to give

ρF = ρ∗
F(1 − β2

F). (A.4)

32



J. Phys.: Condens. Matter 19 (2007) 183201 Topical Review

Equation (A.4) relates the parameter ρ∗
F to ρF, the separately measured resistivity of a thin film

of F.
Note that replacing F by N with σ

↓
N = σ

↑
N = σN/2 gives β = 0 and ρN = ρ∗

N, as required.
Now we turn to multilayers. To simplify, we consider a one-dimensional multilayer,

involving just a single F-metal and a single N-metal, with the direction z along the sample
CPP axis. We let both F and N have the same free-electron Fermi surface, but different
conductivities, σN for N and σ

↓,↑
F for F as above, and different elastic scattering times, τ N

for N, and τ F
↑,↓ for F, leading to mean free paths,

λN = vF(1/τ N + 1/τN
sf )

−1 (A.5)

and

λF
↑,↓ = vF(1/τ F

↑,↓ + 1/τ F
sf)

−1, (A.6)

with different spin-relaxation times, τN
sf for N and τ F

sf for F. In F,

lF
↑,↓ =

√
(1/3)vFλ

F
↑,↓τ F

sf (A.7)

and lF
sf is given by [8, 25]

(1/ lF
sf)

2 = (1/ lF
↑)2 + (1/ lF

↓)2. (A.8)

Following [25], we insert equation (A.7) into (A.8) and solve for lF
sf, finding

lF
sf =

√
(λF∗λF

sf)/6, (A.9)

where

(1/λF∗
) = (1/2)[(1/λF

↑) + (1/λF
↓)]. (A.10)

In the free-electron model, we assume that each spin-channel in F contains half of the electrons.
Converting equation (A.3) from σ to λ thus gives

λF
t = (1/2)(λF

↓ + λF
↑). (A.11)

From the definition of βF in terms of ρ↓ and ρ↑, and the inverse relation between ρ and λ, we
can take λ↑ = (1 + βF)λ

F
t and λ↓ = (1 − βF)λ

F
t , and equation (A.10) gives

λF∗ = λF
t (1 − β2

F). (A.12)

Equation (A.9) thus becomes equation (2).
Combining equations (5), (A.4) and (A.12) gives

λF∗
ρ∗

F = λF
t ρF = ρblb, (A.13)

where ρblb is defined in appendix B.
Finally, to obtain the appropriate equations for N, we simply let ↑ parameters = ↓

parameters. Then βN = 0, λN∗ = λN
t = λN

↑ = λN
↓ , ρ∗

N = ρN, and equation (A.9) becomes
equation (3).

lN
sf =

√
(λN

t λN
sf)/6. (3)
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A.2. Equations for spin-accumulation, �μ, in terms of l F
s f and l N

s f

In each layer, define current densities, j↑,↓, and chemical potentials, μ↑,↓. In the limit λ � lsf,
the equations governing electron transport in the F-layers are [8, 110–112]:

Ohm’s law: ∂μF
↑,↓/∂z = (e/σ F

↑,↓) j F
↑,↓ (A.14)

and

Diffusion equation: ∂2(μF
↑ − μF

↓)/∂z2 = (μF
↑ − μF

↓)/(lF
sf)

2. (A.15)

Equation (A.14) is just Ohm’s law for each spin-direction. If we define the ‘spin-accumulation’
�μ = (μF

↑ − μF
↓), equation (A.15) is a diffusion equation for �μ, with scaling length lF

sf. The
solution to equation (A.15) in one dimension is

�μ = A exp(−z/ lF
sf) + B exp(z/ lF

sf) (A.16)

In a free-electron model, |�μ| = 2μ0|�M|/(3nμB) is related to the out of equilibrium
magnetization, �M , where n is the electron density, μB is the Bohr magneton, and μ0 is the
magnetic permeability of empty space. Equation (A.16) then says that the out of equilibrium
magnetization can grow or decay exponentially with length lF

sf. This direct proportionality
between �μ and �M is the source of the term ‘spin-accumulation’—i.e., �μ �= 0 means that
non-equilibrium spins (magnetic moments) build up or decay in the sample. The details of how
they do so in a given multilayer structure are determined by the VF equations [8]. In general,
�μ(z) in an F-layer includes both terms in equation (A.16).

For N-layers, the governing equations are

Ohm’s law: ∂μN
↑,↓/∂z = (e/σ N) j N

↑,↓ (A.17)

and

Diffusion equation ∂2(μN
↑ − μN

↓)/∂z2 = (μN
↑ − μN

↓ )/(lN
sf)

2. (A.18)

The 1D solution to equation (A.18) is just equation (A.16) with lF
sf replaced by lN

sf . In
general, as in F-layers, both terms in equation (A.16) must be included for each N-layer. But
careful experimental design, as in most of the experiments described in section 2.2 and some
in section 2.3, can leave only the decaying exponential.

Cautionary note: One must examine details when comparing our analysis with those in
other papers, since chosen relationships can differ from ours by factors of two—e.g. some
choose 2�μ = (μF

↑ −μF
↓); (1/λF∗

) = [(1/λF
↑)+ (1/λF

↓)]; etc. Hopefully, properly interpreted,
the final results turn out to be the same.

Appendix B. Defining λt for a metal with a measured resistivity, ρ

For a cubic non-magnetic metal, the electrical conductivity σE can be written as an integral of
the mean free path λ over the area of the Fermi surface SF [113]:

σE = (e2/12π3h̄)

∫
λ dSF. (B.1)

Here e is the electronic charge, h̄ is Planck’s constant divided by 2π , and λ is to be
integrated over SF.

If λ = λt is constant over SF, it can be removed from the integral and, using σE = 1/ρ,
equation (B.1) can be rewritten as

λt = [12π3h̄/e2SF]/ρ ≡ ρblb/ρ, (B.2)

which defines the constant ρblb in equation (5). For a free-electron gas, ρblb can be written in
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several different ways. Equation 2.91 in [39] gives

λt = (rs/a0)
2(9.2 nm)/ρ, (B.3)

where a0 = h̄2/me2 is the Bohr radius and rs is the radius of a sphere whose volume is the
volume per conduction electron. Values of rs/a0 for several metals are listed in [39], from
which values of ρblb range from 0.4 f	 m2 for Al to 2.9 f	 m2 for Cs. Using the quantum of
resistance, Rq = h/e2 ≈ 26 k	, and the Fermi wavevector kF with 4πk2

F = SF, equation (B.2)
can be rewritten as

λt = [(Rq)(3π)/2k2
F]/ρ. (B.4)

Values for ρblb can be determined by: (a) calculation for either free electrons or using a
real Fermi surface; (b) anomalous skin effect (ASE) studies; and (c) size-effect studies on thin
wires or films. A collection of values from all three is given in [40]. For Cu, the free-electron
and ASE values are similar and agree with most of the size-effect studies listed. For Ag, the
ASE values are 40% higher than the free-electron calculation, and the size-effect studies agree
slightly better with the free-electron calculation.

Given the agreement between the free-electron, ASE, and size-effect results just described,
plus the surprisingly close agreements between the measured spin-diffusion lengths in Cu- and
Ag-based alloys given in table 1 and those calculated using free-electron values of ρblb for Cu
and Ag, we infer that free-electron values of λt for Cu and Ag should be reliable to at least 50%
and perhaps better. This conclusion disagrees with a claim [114] that the values of λt for Cu
might be in error by a factor of five.

Appendix C. Consideration of mean free path effects in CPP transport

We noted above that the 2CSR model used to analyse the CPP-MR, and the VF and related
models used to analyse both CPP-MR and LNL data, were derived assuming free-electron
Fermi surfaces. Because the 2CSR model is so simple, it provides a convenient baseline for
comparing with calculations that take account of real Fermi surfaces and, indeed, as we will
see in item (4) below, the resulting values of the 2CSR parameters can agree with calculations
that include band structure effects. Nonetheless, for several years, theorists have been showing
that including real Fermi surfaces could lead to deviations from the 2CSR model, even with
no spin-flip scattering. Calculations have examined effects of ballistic versus diffuse scattering
within the F- and N-layers [35], as well as of perfect (ballistic scattering) versus intermixed
(diffusive scattering) interfaces [115]. Deviations from the 2CSR model can arise from: (a)
quantum coherent effects, such as quantum well states [32, 36], and (b) electronic distribution
functions in the Boltzmann equation that vary exponentially on the scale of the mean free
path in the vicinity of interfaces [33, 34, 115, 116]. Probably the simplest way to summarize
these analyses is that they predict that interfacial specific resistances (AR) can depend upon the
separation of the interfaces when that separation is comparable to or less than a mean free path
(λ). They are, thus, called mean free path (mfp) effects.

In general, the predicted deviations from the 2CSR model are largest for ballistic transport
in the N- or F-metals and for perfect interfaces, in part because ballistic transport and perfect
interfaces enhance quantum coherence. In practice, real interfaces are not perfect, and
contributions to the 2CSR model from these imperfect interfaces can dominate over the bulk,
especially if quasi-ballistic bulk transport makes the bulk contributions small. In such a case,
it is unclear how large any deviations from the 2CSR model might be, and in our view the best
way to clarify the situation is via experiments.

Indeed, a number of experiments have been made to explicitly test the 2CSR model and
the VF extension to include spin-flipping. In this appendix we outline the results obtained,
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Figure C.1.
√

A�R(AR(0)) versus N for [Co/Ag]N with fixed tCo = 6 nm comparing data for
fixed tAg = 6 nm and for fixed tT = 720 nm. The dashed line is a fit to the open circles passing
through (0, 0). After [45].

considering tests of both 2CSR and VF. This distinction is important, because two coupled
groups [114, 117–119] have argued that a number of observed deviations from the 2CSR model
should be attributed not to effects of finite lsf via the VF model, but rather to mfp effects
(although we shall see that the two groups apply different mfp models). We consider several
experiments sequentially.

(1) In the first test of the 2CSR model [7], equation (7b) was applied to data on Ag and
Ag(4% Sn) alloys, with Sn chosen as giving a large increase in residual resistivity per atomic
per cent impurity, but having only a small spin–orbit interaction (i.e., weak spin-flipping). As
shown in figure 3 and table 1, the data for Ag and Ag(4%Sn) fell closely on the same straight
line through the origin, although their residual resistivities (and thus their mean free paths)
differ by about a factor of 20. This result was confirmed using Cu and Cu(4%Ge) (figure 4 and
table 1), since Ge in Cu also gives strong elastic scattering, but weak spin-flipping [26, 40]. As
additional evidence that the resistance of a Co/Ag interface does not depend upon the thickness
tAg of the separating Ag layer, figure C.1 shows that data for fixed tCo = 6 nm, plotted as in
equation (7b), fall on the same straight line passing through the origin when the Ag thickness
is held fixed at tAg = 6 nm or let vary from tAg = 12 to 36 nm.

(2) The first quantitative test of the VF model involved a series of Ag- and Cu-based alloys
with impurities (first Pt [12] and later Ni [94]) having spin–orbit cross-sections known from
CESR measurements [26] to be large enough to give noticeable deviations from equation (7b).
Figures 3 and 4 show several examples of such data. The resulting values of lN

sf given in table 1
agree well with predictions from the CESR results.

To summarize, figures 3 and 4 show two different behaviours: (a) when spin-flipping is
weak, data for high-resistivity AgSn and CuGe agree with data for Ag and Cu and the 2CSR
model, but (b) when spin-flipping is strong, data for lower-resistivity AgPt, CuPt, and CuNi
disagree with the 2CSR model but are quantitatively explained by the VF model. No-one has
yet explained both (a) and (b) based solely upon mfp effects.

(3) Mfp effects have also been proposed [32, 119] as an alternative explanation to finite lN
sf

for the different variations of the slopes of a plot of log(A�R) versus tN in figure 9 for different
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nominally pure metals. However, the slopes do not correlate with the residual resistivities
(nominal mean free paths) of the metals, but do correlate with the atomic numbers of the metals
(low V, medium Nb, and high W), as expected if lN

sf is dominated by spin–orbit scattering due
to interfacial alloying with Cu.

(4) Next, if the interface resistances, AR, change with layer thickness for layers that are
thinner than their mean free paths, one would expect interface resistances in [N(3)/Cu(3)]N
multilayers to be affected, because the mfp at 4.2 K for the sputtered Cu is ∼120 nm
using the parameters given in the text above. However, in all four cases studied so far
of M1/M2 interfaces, where M1 and M2 have the same crystal structure and the same
lattice parameter to within 1%, values of AR calculated with no adjustable parameters, and
including real band structures, agree with published experimental values to within their mutual
uncertainties [30, 120]. The calculations assumed diffusive scattering within the layers and
found only modest differences between values of AR for interfaces that were perfect or else
two monolayers of a 50%–50% alloy. Again, there is no evidence of significant deviations from
2CSR or VF analyses that would require the presence of mfp effects.

(5) The strongest case for deviations from 2CSR model behaviour comes from
comparisons of data on [F1/N/F2/N] multilayers in which the two different layers F1
and F2 are interleaved—[F1/N/F2/N]N , or separated—[F1/N]N [F2/N]N . The first
experimental evidence of a potential problem with the 2CSR and VF models was a report
[117] that, contrary to expectations from the 2CSR model, A�R at 4.2 K differed for
samples of Co/Cu that were ‘interleaved’–[Co(8)/Cu(10)/Co(1)/Cu(10)]N , or ‘separated’—
[Co(8)/Cu(10)]N [Co(1)/Cu(10)]N , where Co(8) and Co(1) represent Co layers of thicknesses
8 and 1 nm that have different reversing fields, and the Cu layers are thick enough to minimize
magnetic coupling between adjacent Co layers. Similar differences had previously been
reported in [Co, Py] [121] and [Co, Fe] [122] multilayers, but there can plausibly be attributed
to spin-flipping within the Py or Fe layers due to short spin-diffusion lengths (see table 3). For
Co/Cu, in contrast, the best estimates of lF

sf (table 3) are much larger than the layer thickness
tCo = 8 or 1 nm. The authors of [117] suggested two independent explanations for the
differences: (a) mfp effects due to real Fermi surface effects as described by Tsymbal and
Pettifor [32], or (b) a phenomenological approach in which AR depends upon only the relative
orientations of adjacent Co layers. For simplicity, we characterize the disagreements in both
cases as involving mfp effects versus spin-flipping.

(a) The data of [117] were confirmed in [16, 52], so there is no issue about their correctness.
The issue is solely their interpretation. To test the Tsymbal argument, the measurements were
repeated replacing the Cu by Cu(2% Ge), which has a mfp about 15 times shorter than Cu, but
is only a weak spin-flipper [26]. The relative differences in A�R for interleaved and separated
multilayers were unchanged—the differences are insensitive to mean free path in this regime.
Subsequently, replacing Co by CoFe and Py revealed similar relative differences [123]. Also,
inserting into just the central Cu layer of a separated [Co(8)/Cu]N [Co(1)/Cu]N multilayer a
2 nm thick layer of the strong spin-flipper FeMn increased the difference from the interleaved
one, even though the total AR of the central layer including the FeMn did not exceed that
of a full layer of CuGe [123]. These results were taken [123] as evidence that spin-flipping,
rather than mfp effects, was the source of the differences. If one accepts a long lCo

sf , then such
spin-flipping in the simple Co/Cu multilayers must occur at the Co/Cu interface [52] argued
that the observed differences could be explained by a δCo/Cu = 0.25. Later, that same value
of δCo/Cu was shown [16] to improve the predictions of A�R for Co/Cu EBSVs based upon
the Co/Cu parameters previously determined from multilayer studies, and to help account for
slower than expected CPP-MR growth when ‘internal interfaces with Cu’ were inserted within
Co layers [53]. So far, however, there is no independent confirmation of such a δCo/Cu.
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(b) The phenomenological approach is based upon the assumption that an electron is only
weakly scattered as it travels through the N-layer, so that ‘one must consider the electron as
being scattered by the combined potential of a pair of neighboring F-layers’ [114]. Without
providing any more fundamental justification than this simple statement, the authors developed
a simple model, with adjustable parameters, in which AR depends only upon the angle between
adjacent Co layers, They showed that they could fit various sets of their data. Although the
authors call this a mean free path model, it contains no characteristic lengths—i.e., no mean
free paths appear in it. Contrary to the evidence above that the 2CSR model works well for
samples with tN � λ, these authors claim that a CPP-MR review [5] specifies a requirement for
2CSR applicability to be t 
 λ. But examination of that review shows that it is more careful.
Consistent with a statement on page 302 of that review, the theorist co-author has allowed us to
say the following: ‘The important λ is definitely not the bulk mean free path, λb, which for thin
multilayers is not very relevant. Rather, the two channel resistor model is often relevant because
of the diffuse scattering at the interfaces. In that case you still can work with a mean free
number of transmitted interfaces N . In a very simplified picture, where d is the repeat period,
you might say that 1/λ = 1/(Nd)+1/(λb)’. Here N is the mean number of interfaces through
which an electron passes before being scattered, typically N ∼ 2. Intriguingly, the latest
data from this group [114] confirm the counterargument that spin-flipping produces differences
between interleaved and separated samples similar to those of interest.

These authors also claimed [118] that λ was calculated inappropriately in [16], because
ρblb for Cu might be five times larger than estimated. Counterarguments are given in section 2.1
and appendix B.

(6) Lastly, a more recent, independent test of the 2CSR model and mfp effects used EBSVs
of Co/Cu, Co/Ag, and Co/Au [124]. The square-root function of equation (7b) was examined,
holding tCo fixed, and varying only tN. Equation (7b) of the 2CSR model predicts that the
square root should stay constant, independent of tN. In contrast, both mfp effects and the
VF equations predict that the square root should decrease with increasing tN, but for very
different reasons. Mfp effects cause a decrease because the interface resistance changes as
tN increases. This decrease should ‘saturate’ to a constant value for tN beyond a certain value.
In contrast, VF predicts a decrease if the ratio tN/ lN

sf is large enough to cause significant spin-
flipping. Here, the deviation should increase indefinitely with increasing tN. Unfortunately, the
range of thicknesses studied was not large enough to look for this difference. The observed
deviations from constancy were consistent with simple linear variations with tN. The results
of the experiments were interpreted differently by two groups. One [124] argued that the
observed decreases of the Ag- and Au-based data were consistent with the values of lN

sf given
in table 2 above, so there was no need for mfp effects. While the decreases of the Cu-based
data were larger than expected from the values of lN

sf in table 2, and could be understood based
upon mfp effects, the best-fit difference between the two models was only about one standard
deviation, too small to claim an unambiguous mfp effect. They conceded, however, that the
uncertainties in all three cases were sufficient that a modest mfp effect could not be ruled
out. The other [119] showed that mfp effects could fit the Co/Cu data and claimed those data
to be evidence of such effects. About these data and mfp effects, we make the following
points. (1) For Co/Cu, the values of both AR(AP) and AR(P) were correctly obtained from
the 2CSR model with previously determined parameters with no adjustments. So, even in the
best case for mfp effects, such effects were not needed to explain AR(AP) and AR(P). Their
possible effect could be seen only in the discrepancy from the 2CSR model in the square-root
data, which depends upon small differences between AR(AP) and AR(P). (2) In contrast,
the mfp fits to the data are not parameter free, but involve both a parameter for the square
root and a second parameter to get AR(AP) and AR(P) approximately correct. (3) Since no
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mfp calculations have yet been made for Co/Ag and Co/Au, any need for mfp effects there
is unclear.

To conclude, the strongest evidence for some mfp effects is the difference in behaviours
of AR for interleaved [Co(8)/Cu/Co(1)/Cu]N and separated [Co(8)/Cu]N [Co(1)/Cu]N
multilayers. If a long lCo

sf ∼ 60 nm at 4.2 K is accepted, then this difference seems to require
either some mfp effects or else spin-flipping at Co/Cu interfaces. The rest of the information
in this appendix gives us the impression that, with this possible exception, any mfp effects are
rarely if ever beyond experimental uncertainty ∼10–20%. Since there is disagreement between
different groups over this issue, the reader will have to make his or her own judgment.
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